Search results for "Filtered algebra"

showing 10 items of 31 documents

The Representation Type of the Centre of a Group Algebra

1986

Filtered algebraSymmetric algebraAlgebraPure mathematicsGeneral MathematicsAlgebra representationCellular algebraRepresentation theory of Hopf algebrasUniversal enveloping algebraGroup algebraMathematicsGroup ringJournal of the London Mathematical Society
researchProduct

Quantum and Braided Integrals

2001

We give a pedagogical introduction to integration techniques appropriate for non-commutative spaces while presenting some new results as well. A rather detailed discussion outlines the motivation for adopting the Hopf algebra language. We then present some trace formulas for the integral on Hopf algebras and show how to treat the $\int 1=0$ case. We extend the discussion to braided Hopf algebras relying on diagrammatic techniques. The use of the general formulas is illustrated by explicitly worked out examples.

High Energy Physics - TheoryPure mathematicsQuantum affine algebraQuantum groupFOS: Physical sciencesRepresentation theory of Hopf algebrasMathematical Physics (math-ph)Quasitriangular Hopf algebraHopf algebraFiltered algebraAlgebraHigh Energy Physics - Theory (hep-th)Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)QuantumMathematical PhysicsMathematicsProceedings of Corfu Summer Institute on Elementary Particle Physics — PoS(corfu98)
researchProduct

On the graded identities and cocharacters of the algebra of 3×3 matrices

2004

Abstract Let M2,1(F) be the algebra of 3×3 matrices over an algebraically closed field F of characteristic zero with non-trivial Z 2 -grading. We study the graded identities of this algebra through the representation theory of the hyperoctahedral group Z 2 ∼S n . After splitting the space of multilinear polynomial identities into the sum of irreducibles under the Z 2 ∼S n -action, we determine all the irreducible Z 2 ∼S n -characters appearing in this decomposition with non-zero multiplicity. We then apply this result in order to study the graded cocharacter of the Grassmann envelope of M2,1(F). Finally, using the representation theory of the general linear group, we determine all the grade…

Hilbert series and Hilbert polynomialNumerical AnalysisAlgebra and Number TheoryMatrixGraded ringSuperalgebraPolynomial identitySuperalgebraGraded Lie algebraFiltered algebraAlgebrasymbols.namesakeSettore MAT/02 - AlgebraDifferential graded algebrasymbolsAlgebra representationDiscrete Mathematics and CombinatoricsGeometry and TopologyAlgebraically closed fieldCocharaterMathematicsLinear Algebra and its Applications
researchProduct

The γ5-problem and anomalies — A Clifford algebra approach

1990

Abstract It is shown that a strong correspondence between noncyclicity and anomalies exists. This allows, by fundamental properties of Clifford algebras, to build a simple and consistent scheme for treating γ 5 without using ( d −4)-dimensional objects

PhysicsFiltered algebraNuclear and High Energy PhysicsMultivectorPure mathematicsGeometric algebraClassification of Clifford algebrasClifford algebraParavectorGamma matricesClifford analysisPhysics Letters B
researchProduct

NONCOMMUTATIVE GEOMETRY AND GRADED ALGEBRAS IN ELECTROWEAK INTERACTIONS

1992

The Standard Model of Electroweak Interactions can be described by a generalized Yang-Mills field incorporating both the usual gauge bosons and the Higgs fields. The graded derivative by means of which the Yang-Mills field strength is constructed involves both a differential acting on space-time and a differential acting on an associative graded algebra of matrices. The square of the curvature for the corresponding covariant derivative yields the bosonic Lagrangian of the Standard Model. We show how to recover the whole fermionic part of the Standard Model in this framework. Quarks and leptons fit naturally into the smallest typical and nontypical irreducible representations of the graded …

PhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::PhenomenologyGraded ringAstronomy and AstrophysicsLie superalgebraNoncommutative geometryAtomic and Molecular Physics and OpticsSuper-Poincaré algebraGraded Lie algebraFiltered algebraTheoretical physicsLie algebraAlgebra representationInternational Journal of Modern Physics A
researchProduct

GRADED IDENTITIES FOR THE ALGEBRA OF n×n UPPER TRIANGULAR MATRICES OVER AN INFINITE FIELD

2003

We consider the algebra Un(K) of n×n upper triangular matrices over an infinite field K equipped with its usual ℤn-grading. We describe a basis of the ideal of the graded polynomial identities for this algebra.

PolynomialHilbert series and Hilbert polynomialMathematics::Commutative AlgebraGeneral MathematicsGraded ringTriangular matrixBasis (universal algebra)Graded Lie algebraFiltered algebraAlgebrasymbols.namesakeDifferential graded algebrasymbolsMathematicsInternational Journal of Algebra and Computation
researchProduct

Cocharacters of group graded algebras and multiplicities bounded by one

2017

Let G be a finite group and A a G-graded algebra over a field F of characteristic zero. We characterize the (Formula presented.)-ideals (Formula presented.) of graded identities of A such that the multiplicities (Formula presented.) in the graded cocharacter of A are bounded by one. We do so by exhibiting a set of identities of the (Formula presented.)-ideal. As a consequence we characterize the varieties of G-graded algebras whose lattice of subvarieties is distributive.

Pure mathematics010103 numerical & computational mathematics01 natural sciencesGraded Lie algebraFiltered algebrasymbols.namesakeDifferential graded algebra0101 mathematicsAlgebra over a fieldMathematicsDiscrete mathematicsHilbert series and Hilbert polynomialFinite groupAlgebra and Number TheoryMathematics::Commutative AlgebraMathematics::Rings and Algebras010102 general mathematicsGraded ringPolynomial identitycocharactergraded polynomialSettore MAT/02 - AlgebraBounded functiongraded algebrasymbolsANÉIS E ÁLGEBRAS ASSOCIATIVOS
researchProduct

An Operator Theoretical Approach to Enveloping ϕ* - and C* - Algebras of Melrose Algebras of Totally Characteristic Pseudodifferential Operators

1998

Let X be a compact manifold with boundary. It will be shown (Theorem 3.4) that the small Melrose algebra A≔ ϕb,cl (χ,bΩ1/2) (cf. [22], [23]) of classical, totally characteristic pseudodifferential operators carries no topology such that it is a topological algebra with an open group of invertible elements, in particular, the algebra A cannot be spectrally invariant in any C* – algebra. On the other hand, the symbolic structure of A can be extended continuously to the C* – algebra B generated by A as a subalgebra of ζ(σbL2(χ, bΩ1/2)) by a generalization of a method of Gohberg and Krupnik. Furthermore, A is densely embedded in a Frechet algebra A ⊆ B which is a ϕ* – algebra in the sense of Gr…

Symmetric algebraDiscrete mathematicsFiltered algebraPure mathematicsGeneral MathematicsDifferential graded algebraSubalgebraAlgebra representationDivision algebraCellular algebraUniversal enveloping algebraMathematicsMathematische Nachrichten
researchProduct

On the projectives of a group algebra

1980

Symmetric algebraFiltered algebraPure mathematicsGeneral MathematicsDifferential graded algebraDivision algebraCellular algebraUniversal enveloping algebraGroup algebraCentral simple algebraMathematicsMathematische Zeitschrift
researchProduct

Hom-Lie quadratic and Pinczon Algebras

2017

ABSTRACTPresenting the structure equation of a hom-Lie algebra 𝔤, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on 𝔤, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.

[ MATH ] Mathematics [math]Universal enveloping algebra01 natural sciencesCohomologyFiltered algebraQuadratic algebraMathematics::Category Theory0103 physical sciences[MATH]Mathematics [math]0101 mathematicsMSC: 17A45 17B56 17D99 55N20ComputingMilieux_MISCELLANEOUSMathematicsSymmetric algebraAlgebra and Number TheoryQuadratic algebrasMathematics::Rings and Algebras010102 general mathematicsUp to homotopy algebras16. Peace & justiceLie conformal algebraHom-Lie algebrasAlgebraDivision algebraAlgebra representationPhysics::Accelerator PhysicsCellular algebra010307 mathematical physics
researchProduct