Search results for "Fixed Point"

showing 10 items of 347 documents

Dynamics and spectra of composition operators on the Schwartz space

2017

[EN] In this paper we study the dynamics of the composition operators defined in the Schwartz space of rapidly decreasing functions. We prove that such an operator is never supercyclic and, for monotonic symbols, it is power bounded only in trivial cases. For a polynomial symbol ¿ of degree greater than one we show that the operator is mean ergodic if and only if it is power bounded and this is the case when ¿ has even degree and lacks fixed points. We also discuss the spectrum of composition operators.

Space of rapidly decreasing functionsMathematics::Functional AnalysisPure mathematicsComposition operator010102 general mathematicsSpectrum (functional analysis)Power bounded operatorMonotonic functionFixed pointMean ergodic composition operator01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsOperator (computer programming)Schwartz spaceBounded functionSpectrumFOS: MathematicsErgodic theory0101 mathematicsMATEMATICA APLICADAAnalysisMathematics
researchProduct

Importance of the Window Function Choice for the Predictive Modelling of Memristors

2021

Window functions are widely employed in memristor models to restrict the changes of the internal state variables to specified intervals. Here, we show that the actual choice of window function is of significant importance for the predictive modelling of memristors. Using a recently formulated theory of memristor attractors, we demonstrate that whether stable fixed points exist depends on the type of window function used in the model. Our main findings are formulated in terms of two memristor attractor theorems, which apply to broad classes of memristor models. As an example of our findings, we predict the existence of stable fixed points in Biolek window function memristors and their absenc…

State variableComputer science02 engineering and technologyMemristorType (model theory)Fixed pointTopologyWindow functionlaw.inventionPredictive modelsComputer Science::Hardware ArchitectureComputer Science::Emerging TechnologiesMathematical modellawAttractor0202 electrical engineering electronic engineering information engineeringEvolution (biology)Electrical and Electronic EngineeringPolarity (mutual inductance)threshold voltage020208 electrical & electronic engineeringmemristive systemsBiological system modeling020206 networking & telecommunicationsWindow functionmemristorsIntegrated circuit modelingPredictive modellingIEEE Transactions on Circuits and Systems Ii-Express Briefs
researchProduct

(φ, ψ)-weak contractions in intuitionistic fuzzy metric spaces

2014

The purpose of this paper is to extend the notion of (phi,psi)-weak contraction to intuitionistic fuzzy metric spaces, by using an altering distance function. We obtain common fixed point results in intuitionistic fuzzy metric spaces, which generalize several known results from the literature.

Statistics and ProbabilityDiscrete mathematicsMathematics::General MathematicsInjective metric spaceGeneral EngineeringT-normEquivalence of metricsConvex metric spaceIntrinsic metricMetric spaceCommon fixed point fuzzy metric space generalized weak contraction intuitionistic fuzzy metric spaceSettore MAT/05 - Analisi MatematicaArtificial IntelligenceMetric (mathematics)Metric mapMathematicsJournal of Intelligent & Fuzzy Systems
researchProduct

Wardowski conditions to the coincidence problem

2015

In this article we first discuss the existence and uniqueness of a solution for the coincidence problem: Find p ∈ X such that Tp = Sp, where X is a nonempty set, Y is a complete metric space, and T, S:X → Y are two mappings satisfying a Wardowski type condition of contractivity. Later on, we will state the convergence of the Picard-Juncgk iteration process to the above coincidence problem as well as a rate of convergence for this iteration scheme. Finally, we shall apply our results to study the existence and uniqueness of a solution as well as the convergence of the Picard-Juncgk iteration process toward the solution of a second order differential equation. Ministerio de Economía y Competi…

Statistics and ProbabilityIterative methodsIterative methodCoincidence pointsComplete metric space54H25common fixed pointsConvergence (routing)Applied mathematicsUniquenessMathematicsApplied Mathematics and Statistics47J25lcsh:T57-57.97Applied MathematicsMathematical analysisOrder (ring theory)State (functional analysis)Rate of convergencecoincidence pointsRate of convergenceordinary differential equationsOrdinary differential equationlcsh:Applied mathematics. Quantitative methodsCommon fixed pointsiterative methodslcsh:Probabilities. Mathematical statisticslcsh:QA273-280rate of convergenceFrontiers in Applied Mathematics and Statistics
researchProduct

Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit

2011

In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there exists a unique symmetric limit measure associated to the set of invariant measures in the small-noise limit. The aim of this study is essentially to point out that this statement leads to the existence, as the noise intensity is small, of one unique…

Statistics and ProbabilityMcKean-Vlasov equationLaplace transformdouble-well potential010102 general mathematicsMathematical analysisFixed-point theoremfixed point theoremDouble-well potentialInvariant (physics)01 natural sciencesself-interacting diffusionuniqueness problem[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityRate of convergenceLaplace's methodUniquenessInvariant measureperturbed dynamical systemstationary measures0101 mathematicsLaplace's methodprimary 60G10; secondary: 60J60 60H10 41A60Mathematics
researchProduct

Fixed point results on metric-type spaces

2014

Abstract In this paper we obtain fixed point and common fixed point theorems for self-mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.

Suzuki type mappingcone metric spaceGeneral MathematicsInjective metric spaceMathematical analysisGeneral Physics and Astronomycommon fixed pointPseudometric spaceFixed pointFixed-point propertyConvex metric spaceIntrinsic metricMetric spaceintegral equationfixed pointmetric-type spaceSettore MAT/05 - Analisi MatematicaMetric differentialMathematicsActa Mathematica Scientia
researchProduct

Some new extensions of Edelstein-Suzuki-type fixed point theorem to G-metric and G-cone metric spaces

2013

Abstract In this paper, we prove some fixed point theorems for generalized contractions in the setting of G -metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74–79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313–5317]. We prove, also, a fixed point theorem in the setting of G -cone metric spaces.

Suzuki's theoremDiscrete mathematicsG-metric spaceG-cone metric spaceGeneral MathematicsInjective metric spaceGeneral Physics and AstronomyFixed-point theoremFixed-point propertyConvex metric spaceMetric spacefixed pointSettore MAT/05 - Analisi MatematicaFréchet spaceKakutani fixed-point theoremBrouwer fixed-point theoremEdelstein's theoremMathematicsActa Mathematica Scientia
researchProduct

Search for anomalous top-quark couplings with the D0 detector

2008

Anomalous Wtb couplings modify the angular correlations of the top quark decay products and change the single top quark production cross section. We present limits on anomalous top quark couplings by combining information from W boson helicity measurements in top quark decays and anomalous coupling searches in the single top quark final state. We set limits on right-handed vector couplings as well as left-handed and right-handed tensor couplings based on about 1fb^-1 of data collected by the D0 experiment.

Top quarkParticle physicsInfrared fixed pointHigh Energy Physics::LatticeGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesBottom quarkHigh Energy Physics - ExperimentNuclear physicsParticle decayHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesPhysics::Atomic and Molecular Clusters[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B meson010306 general physics14.65.Ha; 12.15.Ji; 13.85.QkPhysicsCoupling010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTop quark condensateHelicityNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics::Experiment
researchProduct

A new rotational integral formula for intrinsic volumes in space forms

2010

A new rotational version of Crofton's formula is derived for the intrinsic volumes of a domain Y in a space form. More precisely, a functional is defined on the intersection between Y and a totally geodesic submanifold (plane) through a fixed point, such that the rotational average of this functional is equal to the intrinsic volumes of Y. Particular cases of interest in stereology are considered for the Euclidean case. © 2009 Elsevier Inc. All rights reserved.

TransversalityPlane (geometry)Space formApplied MathematicsStereologyMathematical analysisTransversalitySpace formFixed pointSubmanifoldSpace (mathematics)Integral geometryIntersectionMathematics::Metric GeometrySupport setIntegral geometryIntrinsic volumeRotational integralMathematics
researchProduct

A Short Proof that Some Mappings of the Unit Ball of ℓ2 Are Never Nonexpansive

2020

It is known that some particular self-mappings of the closed unit ball Bl2 of l2 with no fixed points cannot be nonexpansive with respect to any renorming of l2. We give here a short proof of this ...

Unit sphereCombinatoricsGeneral Mathematics010102 general mathematics0101 mathematicsFixed point01 natural sciencesMathematicsThe American Mathematical Monthly
researchProduct