Search results for "Fixed Point"

showing 10 items of 347 documents

Brauer's fixed-point-formula as a consequence of Thompson's order-formula

1991

CombinatoricsPure mathematicsBrauer's theorem on induced charactersGeneral MathematicsOrder (group theory)Fixed pointMathematicsArchiv der Mathematik
researchProduct

Fixed points in weak non-Archimedean fuzzy metric spaces

2011

Mihet [Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159 (2008) 739-744] proved a theorem which assures the existence of a fixed point for fuzzy $\psi$-contractive mappings in the framework of complete non-Archimedean fuzzy metric spaces. Motivated by this, we introduce a notion of weak non-Archimedean fuzzy metric space and prove that the weak non-Archimedean fuzzy metric induces a Hausdorff topology. We utilize this new notion to obtain some common fixed point results for a pair of generalized contractive type mappings.

Common fixed points Weak non-Archimedean fuzzy metric spaces Fuzzy contractive mappingsDiscrete mathematicsFuzzy classificationMathematics::General MathematicsLogicInjective metric spaceT-normFuzzy subalgebraIntrinsic metricConvex metric spaceComputingMethodologies_PATTERNRECOGNITIONSettore MAT/05 - Analisi MatematicaArtificial IntelligenceFuzzy set operationsFuzzy numberComputingMethodologies_GENERALMathematicsFuzzy Sets and Systems
researchProduct

Common fixed point theorems of integral type for OWC mappings under relaxed condition

2017

In this paper, we prove a common fixed point theorem for a pair of occasionally weakly compatible (owc) self mappings satisfying a mixed contractive condition of integral type without using the triangle inequality. We prove also analogous results for two pairs of owc self mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement many results existing in the recent literature. Finally, we give an application of our results in dynamic programming.

Common fixed points Weakly compatible mappings Occasionally weakly compatible mappings Contractive condition of integral type Symmetric spacesSettore MAT/05 - Analisi Matematica
researchProduct

Some common fixed point theorems for owc mappings with applications

2013

Starting from the setting of fuzzy metric spaces, we give some new common fixed point theorems for a pair of occasionally weakly compatible (owc) self-mappings satisfying a mixed contractive condition. In proving our results, we do not need to use the triangular inequality. Also we obtain analogous results for two pairs of owc self-mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement some results existing in the literature. Finally, we give some applications of our results.

Common fixed points functional equations fuzzy metric spaces occasionally weakly compatible mappings product spaceSettore MAT/05 - Analisi Matematica
researchProduct

Nonlinear quasi-contractions of Ciric type

2012

In this paper we obtain points of coincidence and common fixed points for two self mappings satisfying a nonlinear contractive condition of Ciric type. As application, using the scalarization method of Du, we deduce a result of common fixed point in cone metric spaces.

Common fixed points quasi-contractions scalarization cone metric spaces.Settore MAT/05 - Analisi Matematica
researchProduct

Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation

2019

International audience; The inverse scattering approach for the defocusing Davey–Stewartson II equation is given by a system of D-bar equations. We present a numerical approach to semi-classical D-bar problems for real analytic rapidly decreasing potentials. We treat the D-bar problem as a complex linear second order integral equation which is solved with discrete Fourier transforms complemented by a regularization of the singular parts by explicit analytic computation. The resulting algebraic equation is solved either by fixed point iterations or GMRES. Several examples for small values of the semi-classical parameter in the system are discussed.

ComputationFOS: Physical sciences010103 numerical & computational mathematicsFixed point01 natural sciencesRegularization (mathematics)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Davey-Stewartson equationsFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]Mathematics[PHYS]Physics [physics]Nonlinear Sciences - Exactly Solvable and Integrable SystemsScattering010102 general mathematicsStatistical and Nonlinear PhysicsD-bar problemsNumerical Analysis (math.NA)Condensed Matter PhysicsFourier spectral methodGeneralized minimal residual methodIntegral equationAlgebraic equationInverse scattering problemExactly Solvable and Integrable Systems (nlin.SI)Limit
researchProduct

$varphi$-pairs and common fixed points in cone metric spaces

2008

In this paper we introduce a contractive condition, called $\varphi \textrm{-}pair$, for two mappings in the framework of cone metric spaces and we prove a theorem which assures existence and uniqueness of common fixed points for $\varphi \textrm{-}pairs$. Also we obtain a result on points of coincidence. These results extend and generalize well-known comparable results in the literature.

Cone metric spaces \and $\varphi$-pairs \and Common fixed points \and Coincidence pointsPure mathematicsGeneral MathematicsInjective metric spaceMathematical analysisFixed pointIntrinsic metricConvex metric spaceMetric spaceCone (topology)Settore MAT/05 - Analisi MatematicaMetric (mathematics)Metric mapMathematics
researchProduct

Common fixed points in cone metric spaces for CJM-pairs

2011

Abstract In this paper we introduce some contractive conditions of Meir–Keeler type for two mappings, called f - M K -pair mappings and f - C J M -pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir–Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du.

Cone metric spaces CJM-pairs Common fixed points Common coincidence points.Injective metric spaceMathematical analysisMathematics::General TopologyFixed pointComputer Science ApplicationsIntrinsic metricConvex metric spaceCombinatoricsMetric spaceCone (topology)Settore MAT/05 - Analisi MatematicaModeling and SimulationUniquenessCoincidence pointMathematicsMathematical and Computer Modelling
researchProduct

Mean ergodicity of weighted composition operators on spaces of holomorphic functions

2016

[EN] Let phi be a self-map of the unit disc D of the complex plane C and let psi be a holomorphic function on D. We investigate the mean ergodicity and power boundedness of the weighted composition operator C-phi,C-psi(f) = psi(f o phi) with symbol phi and multiplier psi on the space H(D). We obtain necessary and sufficient conditions on the symbol phi and on the multiplier psi which characterize when the weighted composition operator is power bounded and (uniformly) mean ergodic. One necessary condition is that the symbol phi has a fixed point in D. If phi is not a rational rotation, the sufficient conditions are related to the modulus of the multiplier on the fixed point of phi. Some of o…

Connected spaceComposition operatorApplied Mathematics010102 general mathematicsErgodicityMathematical analysisHolomorphic functionPower bounded operatorFixed pointHolomorphic function01 natural sciences010101 applied mathematicsMultiplication operatorMean ergodic operatorBounded functionWeighted composition operator0101 mathematicsMATEMATICA APLICADAComplex planeAnalysisMathematics
researchProduct

Transitions in consumption behaviors in a peer-driven stochastic consumer network

2019

Abstract We study transition phenomena between attractors occurring in a stochastic network of two consumers. The consumption of each individual is strongly influenced by the past consumption of the other individual, while own consumption experience only plays a marginal role. From a formal point of view we are dealing with a special case of a nonlinear stochastic consumption model taking the form of a 2-dimensional non-invertible map augmented by additive and/or parametric noise. In our investigation of the stochastic transitions we rely on a mixture of analytical and numerical techniques with a central role given to the concept of the stochastic sensitivity function and the related techni…

Consumption (economics)General MathematicsApplied MathematicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsFixed point01 natural sciencesNoise (electronics)010305 fluids & plasmasNonlinear system0103 physical sciencesAttractorStatistical physicsSensitivity (control systems)Special case010301 acousticsMathematicsParametric statisticsChaos, Solitons & Fractals
researchProduct