Search results for "Fixture"
showing 10 items of 20 documents
Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties
2018
Abstract Friction Stir Extrusion is an innovative direct-recycling technology developed for metal machining chips. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be recycled. The stirring action of the die prompts solid bonding phenomena allowing the back extrusion of a full dense rod. One of the main weakness of this technology is the discontinuity of the process itself that limits the extrudates volume to the capacity of the chamber. In order to overcome that limitation, a dedicated extrusion fixture has to be developed, keeping into account the concurrent needs of a continuous machine. The geometry of the die has to ensure proper press…
AZ31 magnesium alloy recycling through friction stir extrusion process
2015
Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combina…
The performance of thin-film Li-ion batteries under flexural deflection
2006
A method is introduced to study the effects of flexural deformation on the electrical performance of thin-film lithium-ion batteries. Flexural deformation of thin films is of interest to engineers for applications that can be effective in conformal spaces in conjunction with multi-functional composite laminates in structural members under mechanical deflections such as thin airfoils used in unmanned aerial vehicles (UAVs). A test fixture was designed and built using rapid prototyping techniques. A baseline reference charge/discharge cycle was initially obtained with the device in its un-flexed state, in order to later contrast the performance of the thin-film battery when subjected to defle…
A motion planning algorithm for the invalid initial state disassembly problem
2015
Sampling-based motion planners are able to plan disassembly paths at high performance. They are limited by the fact that the input triangle sets of the static and dynamic object need to be free of collision in the initial and all following states. In real world applications, like the disassembly planning in car industry, this often does not hold true. Beside data inaccuracy, this is mainly caused by the modeling of flexible parts as rigid bodies, especially fixture elements like clips. They cause the invalid initial state disassembly problem. In the literature there exists no algorithm that is able to calculate a reasonable disassembly path for an invalid initial state. Our novel algorithm …
Measurement of gap between abutment and fixture in dental conical connection implants. A focused ion beam SEM observation
2020
Background The aim of the authors was to examine the abutment-fixture interface in Morse-type conical implants in order to verify gaps at this level using a new microscopical approach. Material and Methods In this in vitro study, 20 abutment-fixture complexes were prepared by sectioning (longitudinal and cross-sectional to the long axis) with a microtome and then with a focused ion beam (FIB). This is a micrometric machine tool that uses gallium ions to abrade circumscribed areas to dig deeper into the cuts obtained with the microtome in order to eliminate cut-induced artifacts. This is because the FIB abrasion is practically free from artifacts, which are normally generated by the action o…
Dynamic characterization for the dielectric electroactive polymer fundamental sheet
2012
Published version of an article published in the journal: International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-012-4423-6 A study into the appropriateness of characterizing the dynamics of the dielectric electroactive polymer (DEAP) fundamental sheet has been performed. Whereby a model describing the dynamics of the DEAP fundamental sheet is developed, parameters of the models are determined using experimental/simulation results, and verification has been conducted to determine the precision of the dynamic model. The precision for the DEAP sheet-obtained dynamic model could not be verified unless some parameters c…
Shape Distortion and Thickness Distribution during SPIF Processes: Expermental and Numerical Analysis
2011
Single Point Incremental Forming (SPIF) is a quite new sheet forming process which offers the possibility to deform complex parts without dedicated dies using only a single point tool and a standard 3-axis CNC machine. The process mechanics enables strains much higher than traditional sheet forming processes, but particular attention must be given to the final part geometrical accuracy. In this paper the capabilities of a dedicated explicit numerical model are quantitatively analyzed on pyramid-shaped parts. In particular a comparison between experimental and numerical results is reported. Three different shapes at the varying of the stamping angle were considered and the final shape was ac…
Friction stir welding of tailored joints for industrial applications
2009
Friction stir welding (FSW) is an energy efficient and environmentally "friendly" (no fumes, noise, or sparks) welding process, during which the workpieces are welded together in a solid-state joining process at a temperature below the melting point of the workpiece material under a combination of extruding and forging. Since its invention in 1991 by TWI, such process has been reaching a continuously increasing popularity among aerospace, automotive and shipbuilding industries due its capability to weld unweldable or difficult-to-weld light alloys in different joint morphologies. In this paper a wide experimental campaign is carried out in order to obtain T and lap joints characterized by d…
FSW of Lap and T-Joints
2010
Even if in the last years several researches have studied the Friction Stir Welding (FSW) process, it should be observed that most of these studies are concerned with the butt joint and just a few of them extend to more complex geometries. It is worthy to notice that the acquired knowledge on FSW process of butt joints is not immediately extendable to lap and T-joints. The first observation is that in butt joints the surface to be welded is vertical, while in lap and T-joints it is horizontal and placed at the bottom of the top blank to be welded; in this way a major vertical component of the material flow is required to obtain sound joints. In the FSW of lap-joints four different geometric…
Virtual simulation of an osseointegrated trans-humeral prosthesis: A falling scenario
2018
Abstract Introduction Traditional prosthetic solutions expose the amputee to numerous problems that limit his ability to safely perform the normal activities of daily life. In order to eliminate the problems related to the use of the traditional prosthesis with socket, a new technique was developed for fixing the prosthesis to the amputees based on the principle of osseointegration. The aim of this paper is to study and analyze the stress distribution on the interface between a trans-humeral osseointegrated prosthetic implant and the residual bone, identifying the most stressed areas and thus foreseeing possible failure phenomena of the entire prosthetic system and, after, to compare the st…