Search results for "Fixture"
showing 10 items of 20 documents
A technical note on an experimental device to measure friction coefficient in sheet metal forming
2006
Abstract In the paper the authors present the results of several experimental tests aimed to determine the Coulomb friction coefficient in sheet metal forming operations at the varying of the sheet metal material and for different operative conditions. In particular a few pressure and lubricating conditions have been investigated. In order to develop such experiments a dedicated fixture was designed and set-up starting from the one proposed by Wilson.
On the linear friction welding process of aluminum alloys: Experimental insights through process monitoring
2013
Abstract Linear friction welding is a solid-state joining process for non-axisymmetric components in which joining of materials is obtained through the relative motion of two components under pressure. In the process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and eventually bonding conditions. A dedicated fixture was equipped with sensors for the in-process acquisition of variables regarding kinematics, dynamics and temperature levels. The results of an experimental campaign aimed to weld AA6082-T6 aluminum alloy parts are presented and a process window is identified for the used alloy.
Transmission Attenuation Power Ratio Analysis of Flexible Electromagnetic Absorber Sheets Combined with a Metal Layer.
2018
Electromagnetic noise absorber sheets have become a solution for solving complex electromagnetic interference (EMI) problems due to their high magnetic losses. This contribution is focused on characterizing a novel structure that is based on an absorber film with a metal layer attached on its top side. Two different absorber compositions were combined with Al and Cu metal layers in order to study the improvement on the performance of these structures, depending on the complex permeability, absorber film thickness, and type of metal. The transmission attenuation power ratio of the absorber films is analyzed and compared to the performance of absorber and metal structures. The measurement pro…
A new fixture for FSW processes of titanium alloys
2010
FSW of titanium alloys is nowadays one of the most challenging welding operations, even with a solid state process, due to the thermo-mechanical and thermo-chemical characteristics of such materials. Due to the relevant application of titanium alloys in the aeronautic and aerospace industries, in the recent years few attempts were carried out to develop FSW processes aimed to maximize the mechanical performances of the welded parts. In the paper a new fixture is presented allowing obtaining effective FSW joints of titanium blanks, which were investigated through mechanical and metallurgical tests highlighting the peculiarities of FSW of titanium alloys.
Fatigue crack growth of new FML composites for light ship buildings under predominant mode II loading condition
2019
The use of light but strong materials is largely studied in various area of the shipbuilding, this because the need of reducing the weight, and especially the weight of all the structures above the main deck assume primary importance for the stability. Traditionally in fast boats like fast ferries, hydrofoils, patrol boats, the typical materials are Aluminum alloy or composites, both those materials have advantages and disadvantages, but the new development of technologies made possible to combine them, in order to have a new material, combining the advantages of both, in terms of fatigue resistance, firefighting characteristics. In this paper, predominant mode II fatigue delamination tests…
TEMPERATURE DEPENDENT NOISY MODELS OF PSEUDOMORPHIC HEMTs
1994
From a complete characterization in terms of noise and scattering parameters carried out at room temperature in the 8–16 GHz frequency range, the noisy small‐signal model of a pseudomotphic HEMT series has been extracted. The transistor scattering parameters have been subsequently measured at lower temperatures (down to −50 °C) by placing the device text fixture in a thermo‐controlled chamber. The model effectiveness has then been tested by determining the circuit element values at the different temperatures and by observing the model noise performance.
Temperature Dependence of pHEMT-Based LNA Performance for VSAT Applications
1994
From a complete characterization in terms of noise and scattering parameters carried out at room temperature in the 8-16 GHz frequency range, the noisy small-signal model of a pseudomorphic HEMT series has been extracted. The transistor scattering parameters have been subsequently measured at lower temperatures (down to -50 °C) by placing the device text fixture in a thermo-controlled chamber. An accurate noisy model has then been extracted by determining the circuit element values at the different temperatures. The trade-off performance of a pHemt-based LNA for VSAT receiver system applications has been investigated vs. frequency and temperature.
A New Approach to Evaluate the Biomechanical Characteristics of Osseointegrated Dental Implants
2019
Tooth loss is a common pathology that affects many people. Dental osseointegrated implants are the ideal solution to restore normal functionality in partially or completely edentulous patients. The not perfect osseointegration and the fixture fracture are the main causes of failure for these kinds of implant. To avoid these drawbacks, several studies have been conducted to analyse the behaviour of dental implants. Aim of this work is to analyse the biomechanical behaviour of three different endosseous dental implants. For this purpose, a new numerical model has been developed to simulate different levels of osseointegration and to evaluate the stress values on the bone at different times. I…
Influence of material characteristics on plastomechanics of the fsw process for T-joints
2009
Abstract The potential of friction stir welding (FSW) has thoroughly been investigated by several authors, however their focus has primarily been on butt joints. T-joints are of paramount interest for transportation industries especially due to their capacity to straighten panels. Welding of T-joints is very challenging due to thin walls, poor location of the rib–web interface and the requirements for corner-fillets. This paper investigates FSW of T-joints of two popular aluminum alloys, i.e. 2024-T4 and 6082-T6, and the role played by the material characteristics on joining. First, an experimental study is carried out with specially designed fixture to determine the effect of process condi…
Investigations on the linear friction welding process through numerical simulations and experiments
2012
Abstract Linear Friction Welding (LFW) is a solid-state joining process applied to non-axisymmetric components. LFW involves joining of materials through the relative motion of two components undergoing an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and eventually bonding conditions. In the paper the authors present a designed and assembled laboratory fixture for LFW operations and the results of an experimental and numerical campaign aimed to weld steel parts. The dedicated fixture permitted to highlight the effect of the most important process parameters. Process conditions allowing ef…