Search results for "Flow Rate"
showing 10 items of 166 documents
Reactor model for fast reactions in the micro-bubble column and validation
2007
A simple reactor model for predicting conversions in a micro-bubble column is described. It assumes fast reactions so that the gaseous component is readily consumed at the gas-liquid interface. Then, gas-liquid mass transfer becomes determining. As input parameters for the model, the hydrodynamics, specific interfacial area, and mass transport need to be described. Two fast model reactions, the catalytic oxidation of butyraldehyde and the absorption of CO2 in aqueous NaOH, show the applicability of the model but also its limits. The model was used for predicting reaction performance in dependence of operating conditions, in particular to get maximum conversion with the antagonistic paramete…
A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions
2021
Abstract A natural clay material from southern Tunisia was used as a low cost sorbent in a column-wise removal of metal pollutants. This is fundamentally important for a sustainable wastewater treatment strategy. This work has been performed within the framework of a project aiming to the valorization of natural geomaterials, from Tunisia, in several environmental applications. Column adsorption experiments were carried out for a better production of cleaner effluents and further understanding of the main mechanisms involved in the removal process, through a dynamic methodology, that would allow an industrial scale treatment. A calcined clay sample was used as an adsorbent for the removal o…
Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles
2020
Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and a…
Sorption-Caused Attenuation and Delay of Water Vapor Signals in Eddy-Covariance Sampling Tubes and Filters
2014
AbstractAdsorption and desorption (together called sorption) processes in sampling tubes and filters of eddy-covariance stations cause attenuation and delay of water vapor signals, leading to an underestimation of water vapor fluxes by tens of percent. The aim of this work was (i) to quantify the effects on sorption in filters and tubes of humidity, flow rate, and dirtiness and (ii) to test a recently introduced sorption model that facilitates correction of fluxes. Laboratory measurements on the transport of water vapor pulses through tubes and filters were carried out, and eddy-covariance field measurements were also used.In the laboratory measurements, the effects of sorption processes we…
CO2flux measurements in volcanic areas using the dynamic concentration method: Influence of soil permeability
2006
[1] In order to evaluate the influence of soil permeability on soil CO2 flux measurements performed with the dynamic concentration method, several tests were carried out using soils characterized by different permeability values and flow rates. A special device was assembled in the laboratory to create a one-dimensional gas flow through a soil of known permeability. Using the advective-diffusion theory, a physical model to predict soil concentration gradients was also developed. The calculated values of CO2 concentrations at different depths were compared with those measured during the tests and a good agreement was found. Four soils with different gas permeability (3.6 × 10−2 to 1.23 × 102…
Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling
2020
We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that…
Development of a membrane-less microfluidic thermally regenerative ammonia battery
2021
Thermally regenerative ammonia battery is a promising approach to make use of waste heat and generate electrical energy. However, according to literature, the price of the energy obtained by this device is much higher than alternative renewable technologies (such as wind, solar, geothermal, etc.). To make the process more viable for applicative purposes, it would be necessary to reduce dramatically the cost of the membrane or to avoid it. Hence, the aim of the present work is to increase the economic figures of thermally regenerative ammonia battery avoiding the use of membranes. It was concluded that this result can be obtained by developing the process in a microfluidic flow cell with lam…
Cadmium and Copper Removal by a Granular Activated Carbon in Laboratory Column Systems
2000
Single and competitive removal of Cd and Cu from aqueous solutions by using Darco 12–20 mesh granular activated carbon in column systems has been investigated. Seven experiments modifying the initial pH and the flow rate were performed. Results showed the efficiency of activated carbon as a sorbent for both metals. pH is shown to be the decisive parameter on metal removal in the column; metal removal increases when the influent pH value is raised. The influence of the flow rate for the experimental conditions is negligible. Batch adsorption and column data are compared. Column modeling assuming local equilibrium and rate-controlled pore diffusion was performed.
Detection of gas trace of hydrofluoric acid using microcantilever
2004
Abstract Microcantilevers have been used as a gas sensor in order to detect Hydrofluoric acid (HF) in the concentration range of 0.26–13 ppm. Silicon derived elements (Si 3 N 4 , SiO x ) were chosen to serve as chemical sensitive layer. Cantilever deflection and frequency shift were analyzed and compared as a function of the flow rate and the concentration of the HF molecules. The stoichiometry and roughness of the sensitive layer were found to be of major importance. Results show that the most appropriate signal at the lowest concentration ( x surface by HF. The frequency shift that is mainly governed by the loss in cantilever mass can be used at higher concentration.
Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study
2015
Abstract Instability of the Au/Ni(111) surface alloy is studied in different CO gas pressure, p , and temperature limits using kinetic Monte Carlo simulations. We analyze the reaction front dynamics and formation of Au clusters using the model which takes into account surface adatom pair and three-body interactions, CO adsorption and desorption, catalytic carbonyl formation reaction, Au and Ni adatom diffusion and their concerted exchange. Variation of interaction parameters allows us to identify three possible reaction front propagation limits with different pressure dependencies: (i) slow channel-like flow in agreement with experimental data [1] (step flow rate, R , increases with p ), (i…