Search results for "Flow Rate"

showing 10 items of 166 documents

Engineering Polymer Microparticles by Droplet Microfluidics

2013

Capillary-based flow-focusing and co-flow microsystems were developed to produce sphere-like polymer microparticles of adjustable sizes in the range of 50 to 600 μm with a narrow size distribution (CV < 5%) and different morphologies (core-shell, janus, and capsules). Rod-like particles whose length was conveniently adjusted between 400 μm and few millimeters were also produced using the same microsystems. Influence of operating conditions (flow rate of the different fluid, microsystem characteristic dimensions, and design) as well as material parameters (viscosity of the different fluids and surface tension) was investigated. Empirical relationships were thus derived from experimental data…

Fluid Flow and Transfer Processeschemistry.chemical_classificationMaterials scienceCapillary actionOrganic ChemistryNanotechnologyPolymerRodVolumetric flow rateSurface tensionViscosityChemical engineeringchemistryChemistry (miscellaneous)MicrosystemChimie/AutreMicroparticleJournal of Flow Chemistry
researchProduct

Adaptive PI Control of Bottom Hole Pressure during Oil Well Drilling

2018

Abstract In this paper, we studied the bottom hole pressure (BHP) control in an oil well during drilling. Today marginal wells with narrow pressure windows are frequently being drilled. This requires accurate and precise control to balance the bottom hole pressure between the pore and fracture pressure of the reservoir. This paper presents three control schemes to stabilize the BHP prole, including proportional-integral(PI) control, PI with feed-forward control and adaptive PI with feed-forward control. The proposed schemes are carried out through simulations on a high-fidelity hydraulic drilling simulator for flow rate changes and BHP set-point changes. In fast set-point changes and flow r…

Fracture pressurePID controllerDrilling02 engineering and technology010502 geochemistry & geophysicsBottom hole pressure01 natural sciencesVolumetric flow ratelaw.inventionTracking error020401 chemical engineeringControl and Systems EngineeringControl theoryOil welllawOil well drilling0204 chemical engineeringGeology0105 earth and related environmental sciences
researchProduct

Diffuse soil gas emissions of gaseous elemental mercury (GEM) from hydrothermal-volcanic systems: An innovative approach by using the static closed-c…

2016

This study was aimed to test a new methodological approach to carry out measurements of gaseous elemental mercury (GEM) diffusively emitted from soils in hydrothermal-volcanic environments. This method was based on the use of a static closed-chamber (SCC) in combination with a Lumex® RA-915M analyzer that provides GEM measurements in a wide range of concentrations (from 2 to 50,000 ng m-3). Gas samples were collected at fixed time intervals from the SCC positioned on the ground (time-series samples). The Lumex® inlet port was equipped with a three-way Teflon valve allowing the free entrance of air through a carbon trap, in order to: (i) prevent disturbance to the Lumex® operative flow rate …

GEM flux Diffuse soil degassing Air pollutant Hydrothermal gas010504 meteorology & atmospheric sciencesCalibration curveMineralogychemistry.chemical_elementGEM flux010502 geochemistry & geophysics01 natural sciencesImpact craterGeochemistry and PetrologyEnvironmental Chemistry0105 earth and related environmental sciencesgeographygeography.geographical_feature_categorySoil gasAir pollutantHydrothermal gasDiffuse soil degassingInletPollutionSettore GEO/08 - Geochimica E VulcanologiaVolumetric flow rateMercury (element)chemistryContour lineSoil waterFluid geochemistryApplied Geochemistry
researchProduct

Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments

2011

The electrochemical oxidation of organics in water performed in micro reactors on boron doped diamond (BDD) anode was investigated both theoretically and experimentally in order to find the influence of various operative parameters on the conversion and the current efficiency CE of the process. The electrochemical oxidation of formic acid (FA) was selected as a model case. High conversions for a single passage of the electrolytic solution inside the cell were obtained by operating with proper residence times and low distances between cathode and anode. The effect of initial concentration, flow rate and current density was investigated in detail. Theoretical predictions were in very good agr…

General Chemical EngineeringAnalytical chemistryFormic acidWastewaterElectrochemistrylaw.inventionElectric reactorCurrent densitylawMass transferSh numberElectrochemistryMicro deviceMass transferBubble formationMicro reactorMass transfer coefficientChemistryWastewater treatment Electrochemical oxidationLimiting currentSettore ING-IND/27 - Chimica Industriale E TecnologicaCathodeAnodeVolumetric flow rateTheoretical models BoronBDDCurrent densityForecastingElectrochimica Acta
researchProduct

Heat pipe controlled syntheses of ionic liquids in microstructured reactors

2009

Abstract The combination of a heat pipe and a microstructured reactor allows to perform highly exothermal reactions under safe conditions. First experiments for the synthesis of 1,3-dimethylimidazolium-triflate from 1-methylimidazol and methyl triflate showed that at high flow rates of more than 5 ml/min through a single 300 μm × 500 μm wide and 400 mm long channel quantitative conversion could be achieved. This chemical reaction, known for extreme heat release, can be retained under thermal control even at much higher flow rates.

General Chemical EngineeringGeneral ChemistryChemical reactionThermal controlIndustrial and Manufacturing EngineeringVolumetric flow rateExtreme heatchemistry.chemical_compoundHeat pipeChemical engineeringchemistryIonic liquidEnvironmental ChemistryOrganic chemistryMicroreactorHigh flowChemical Engineering Journal
researchProduct

Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors

2016

Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at gen- erating osteochondral constructs, i.e., a biphasic construct in which one side is cartilagi- nous in nature, while the other is osseous. We next develop a general computat…

Genetics and Molecular Biology (all)0301 basic medicineComputer scienceDistributed computinglcsh:Medicine02 engineering and technologyMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)BiochemistryOxygenPLLA bioreactor computational modelMedicine and Health SciencesFluid dynamicslcsh:ScienceThroughput (business)Flow RateMultidisciplinaryPhysicsSimulation and ModelingMedicine (all)Classical MechanicsVolumetric flow rateChemistryConnective TissuePhysical SciencesAnatomyResearch ArticleChemical ElementsCell Physiology0206 medical engineeringMicrofluidicschemistry.chemical_elementFluid MechanicsResearch and Analysis MethodsContinuum Mechanics03 medical and health sciencesBioreactorFluidicsFluid Flowlcsh:RBiology and Life SciencesBiological TransportFluid DynamicsCell BiologyConstruct (python library)020601 biomedical engineeringCell MetabolismOxygenMetabolismBiological TissueCartilage030104 developmental biologyAgricultural and Biological Sciences (all)chemistryFlow (mathematics)lcsh:QPorous mediumPLOS ONE
researchProduct

Heat Pipe-Mediated Control of Fast and Highly Exothermal Reactions

2011

The synthesis of 1-ethyl-3-methylimidazolium ethyl-sulfate ([EMIM]EtSO4) from 1-methyl-imidazole and diethyl sulfate suffers from highly exothermal behavior. Once the activation energy barrier is reached (EA = 89 kJ mol–1), the bimolecular reaction accelerates with a high reaction enthalpy (ΔH = −130 kJ mol–1).(1-3) The excess of heat has to be concurrently dissipated to avoid hot spots or thermal runaways. Depending on the volume flow velocity of the reactants and the applied reactor temperature, the reaction zone can be shifted inside the reactor from the inlet to the outlet and vice versa. Therefore, a sophisticated thermal control, oscillating between providing activation energy and int…

Heat pipeChemistryOrganic ChemistryEnthalpyThermalReaction zoneThermodynamicsActivation energyPhysical and Theoretical ChemistryThermal controlVolumetric flow rateOrganic Process Research &amp; Development
researchProduct

Bench-scale investigation of inclined dense jets

2005

In this work experimental data on the geometry of dense inclined jets issuing in a lab-scale glass rectangular tank are presented. The surrounding fluid was always tap water at room temperature while the dense jets were water solutions of NaCl. Four parameters were changed in the experiments, namely nozzle diameter and inclination, and jet density and flow rate. Jet trajectories were revealed by a colored tracer. Images of the jet were recorded by a digital camera and then further digitally processed, eventually resulting in a time-averaged tracer intensity field. All the jet geometrical parameters, once normalized, were found to be very well correlated to the densimetric Froude number. Mod…

HydrologyJet (fluid)Materials scienceField (physics)Astrophysics::High Energy Astrophysical PhenomenaMechanical EngineeringNozzlesubmerged jets jet diffusion negatively buoyant jetsMechanicsVolumetric flow ratePhysics::Fluid Dynamicssymbols.namesakeViscosityFroude numbersymbolsHigh Energy Physics::ExperimentDiffusion (business)Intensity (heat transfer)Water Science and TechnologyCivil and Structural Engineering
researchProduct

Impact analysis of MPL and PEM thickness on temperature distribution within PEFC operating at relatively higher temperature

2020

Abstract In Japan, it is recommended to operate Polymer Electrolyte Fuel Cell (PEFC) at temperature around 90 °C for stationary applications during the period from 2020 to 2025. However, the present PEFC is using Nafion polymer electrolyte membrane (PEM) and operated within the temperature range from 60 °C to 80 °C. It is important to understand the temperature distribution in a cell of PEFC for improving the performance and to realize the long life span. This study focuses on use of micro porous layer (MPL), which can promote the moisture transfer in order to control the temperature distribution. The aim of this study is to analyze the impact of MPL on temperature distribution at reaction …

ImaginationMaterials scienceChemical substance020209 energymedia_common.quotation_subject02 engineering and technologyElectrolyteIndustrial and Manufacturing Engineeringchemistry.chemical_compound020401 chemical engineeringNafion0202 electrical engineering electronic engineering information engineeringRelative humidity0204 chemical engineeringElectrical and Electronic EngineeringComposite materialCivil and Structural Engineeringmedia_commonMechanical EngineeringBuilding and ConstructionAtmospheric temperature rangePollutionVolumetric flow rateGeneral EnergychemistryScience technology and societyEnergy
researchProduct

Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)6 and W(CO)6

2015

Abstract Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By in…

Inorganic chemistryMetal carbonyl02 engineering and technology010402 general chemistry01 natural sciences7. Clean energythermal stability540 ChemistryseaborgiumThermal stabilityNuclideGas compositionPhysical and Theoretical Chemistrycarbonyl complexegroup 6ChemistrytransactinideTransition metals021001 nanoscience & nanotechnologyDecompositionBond-dissociation energy0104 chemical sciencesVolumetric flow rateYield (chemistry)570 Life sciences; biologyPhysical chemistry0210 nano-technology
researchProduct