Search results for "Fluid dynamic"
showing 4 items of 1034 documents
High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method
2018
We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a three-dimensional lid-driven cavity flow are found to be stable up to the unprecedented Reynolds number $\mathrm{Re}=5\ifmmode\times\else\texttimes\fi{}{10}^{4}$ for this setup. Excellent agreement with energy balance equations, computational and experimental results are shown. We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of turbulent production.
Microstructural evaluation and recommendations for face masks in community use to reduce the transmission of respiratory infectious diseases
2022
Funding Information: A.K., H.Y. and R.J. also acknowledges the funding through Academy of Finland BESIMAL (Decision No. 334197) and Aalto University, Department of Communications and Networking. This work has also received funding in part from the EPSRC UK (grant number EP/R012091/1). A.K. would also like to thank Mr. Volkan Kaplan for the fruitful discussions in the early concept generation. Publisher Copyright: © 2022 The Author(s) Background and Objective: Recommendations for the use of face masks to prevent and protect against the aerosols (≤5µm) and respiratory droplet particles (≥5µm), which can carry and transmit respiratory infections including severe acute respiratory syndrome coro…
Designing a graphics processing unit accelerated petaflop capable lattice Boltzmann solver: Read aligned data layouts and asynchronous communication
2016
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently, general-purpose graphics processing units (GPUs) have become available as high-performance computing resources at large scale. We report on designing and implementing a lattice Boltzmann solver for multi-GPU systems that achieves 1.79 PFLOPS performance on 16,384 GPUs. To achieve this performance, we introduce a GPU compatible version of the so-called bundle data layout and eliminate the halo sites in order to improve data access alignment. Furthermore, we make use of the possibility to overlap data transfer between the host central processing unit and the device GPU with com…
Strain hardening in liquid-particle suspensions
2005
The behavior of a liquid-particle suspension induced to sheared motion was analyzed by numerical simulations. When the velocity (strain) of the suspension began to increase, its viscosity first stayed almost constant, but increased then rapidly to a clearly higher level. This increase in viscosity is shown to be related to formation of clusters of suspended particles. Clusters are shown to increase the viscosity by enhanced momentum transfer though clustered particles. This is the mechanism behind the strain-hardening phenomenon observed in small-strain experiments on liquid-particle suspensions.