Search results for "Fluid dynamic"

showing 10 items of 1034 documents

Regional variation of wall shear stress in ascending thoracic aortic aneurysms.

2014

The development of an ascending thoracic aortic aneurysm is likely caused by excessive hemodynamic loads exerted on the aneurysmal wall. Computational fluid-dynamic analyses were performed on patient-specific ascending thoracic aortic aneurysms obtained from patients with either bicuspid aortic valve or tricuspid aortic valve to evaluate hemodynamic and wall shear parameters, imparting aneurysm enlargement. Results showed an accelerated flow along the outer aortic wall with helical flow in the aneurysm center for bicuspid aortic valve ascending thoracic aortic aneurysms. In a different way, tricuspid aortic valve ascending thoracic aortic aneurysms exhibited normal systolic flow without su…

Computational fluid dynamics ascending thoracic aortic aneurysm bicuspid aortic valve wall shear stress hypertensionAortic valvemedicine.medical_specialtyAortabusiness.industryMechanical EngineeringSettore ING-IND/34 - Bioingegneria IndustrialeHemodynamicsGeneral Medicinemedicine.diseaseThoracic aortic aneurysmSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineBicuspid aortic valveAneurysmmedicine.anatomical_structuremedicine.arteryInternal medicinecardiovascular systemmedicineCardiologyShear stresscardiovascular diseasesbusinessHelical flowProceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
researchProduct

Numerical methods in the design process of a sailing yacht

2014

Computational fluid dynamics conceptual design numerical methods optimization sailing yachtSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria Industriale
researchProduct

Efficient parallel computations of flows of arbitrary fluids for all regimes of Reynolds, Mach and Grashof numbers

2002

This paper presents a unified numerical method able to address a wide class of fluid flow problems of engineering interest. Arbitrary fluids are treated specifying totally arbitrary equations of state, either in analytical form or through look‐up tables. The most general system of the unsteady Navier–Stokes equations is integrated with a coupled implicit preconditioned method. The method can stand infinite CFL number and shows the efficiency of a quasi‐Newton method independent of the multi‐block partitioning on parallel machines. Computed test cases ranging from inviscid hydrodynamics, to natural convection loops of liquid metals, and to supersonic gasdynamics, show a solution efficiency i…

Computations Flow FluidNatural convectionApplied MathematicsMechanical EngineeringNumerical analysisCourant–Friedrichs–Lewy conditionGrashof numberMechanicsComputer Science ApplicationsPhysics::Fluid Dynamicssymbols.namesakeClassical mechanicsMach numberMechanics of MaterialsInviscid flowFluid dynamicssymbolsSupersonic speedSettore ING-IND/19 - Impianti NucleariMathematicsInternational Journal of Numerical Methods for Heat & Fluid Flow
researchProduct

Visualization_1.mp4

2018

Images obtained with a Walsh Zone Plate and with the equivalent periodic zone plate of the same resolution.

Computer Science::PerformancePhysics::Fluid DynamicsPhysics::Instrumentation and DetectorsMathematics::Classical Analysis and ODEsAstrophysics::Earth and Planetary Astrophysics
researchProduct

Visualization_1.mp4

2018

Images obtained with a Walsh Zone Plate and with the equivalent periodic zone plate of the same resolution.

Computer Science::PerformancePhysics::Fluid DynamicsPhysics::Instrumentation and DetectorsMathematics::Classical Analysis and ODEsAstrophysics::Earth and Planetary Astrophysics
researchProduct

An efficient swap algorithm for the lattice Boltzmann method

2007

During the last decade, the lattice-Boltzmann method (LBM) as a valuable tool in computational fluid dynamics has been increasingly acknowledged. The widespread application of LBM is partly due to the simplicity of its coding. The most well-known algorithms for the implementation of the standard lattice-Boltzmann equation (LBE) are the two-lattice and two-step algorithms. However, implementations of the two-lattice or the two-step algorithm suffer from high memory consumption or poor computational performance, respectively. Ultimately, the computing resources available decide which of the two disadvantages is more critical. Here we introduce a new algorithm, called the swap algorithm, for t…

Computer simulationComputer sciencebusiness.industryLattice Boltzmann methodsGeneral Physics and AstronomyComputational fluid dynamicsProgram optimizationNonlinear Sciences::Cellular Automata and Lattice GasesHigh memoryHardware and ArchitecturebusinessAlgorithmImplementationSwap (computer programming)Coding (social sciences)Computer Physics Communications
researchProduct

Macroscopic equations of motion for two-phase flow in porous media

1998

The established macroscopic equations of motion for two phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore a more general system of macroscopic equations is derived here which incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach which exhibit a complex dependence on the state v…

Condensed Matter - Materials ScienceCapillary pressureMaterials scienceContinuum mechanicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesEquations of motionCapillary numberPhysics::Fluid DynamicsSurface tensionCapillary lengthClassical mechanicsCapillary surfaceDisplacement (fluid)Physical Review E
researchProduct

Generalization of Vinen’s equation including transition to superfluid turbulence

2005

A phenomenological generalization of the well known Vinen equation for the evolution of vortex line density in superfluid counterflow turbulence is proposed. This generalization includes nonlinear production terms in the counterflow velocity and corrections depending on the diameter of the tube. The equation provides a unified framework for the various phenomena (stationary states and transitions) present in counterflow superfluid turbulence: in fact, it is able to describe the laminar regime, the first-order transition from laminar to turbulent TI state, the two turbulent states, the transition from TI to TII turbulent states, and it yields a slower decay of the counterflow turbulence than…

Condensed Matter::Quantum GasesPhysicsCondensed Matter::OtherTurbulenceLaminar flowTourbillonCondensed Matter PhysicsVortexPhysics::Fluid DynamicsSuperfluidityNonlinear systemClassical mechanicsPhenomenological modelGeneral Materials ScienceStationary stateJournal of Physics: Condensed Matter
researchProduct

Universal vortex formation in rotating traps with bosons and fermions.

2004

When a system consisting of many interacting particles is set rotating, it may form vortices. This is familiar to us from every-day life: you can observe vortices while stirring your coffee or watching a hurricane. In the world of quantum mechanics, famous examples of vortices are superconducting films and rotating bosonic $^4$He or fermionic $^3$He liquids. Vortices are also observed in rotating Bose-Einstein condensates in atomic traps and are predicted to exist for paired fermionic atoms. Here we show that the rotation of trapped particles with a repulsive interaction leads to a similar vortex formation, regardless of whether the particles are bosons or (unpaired) fermions. The exact, qu…

Condensed Matter::Quantum GasesPhysicsStatistical Mechanics (cond-mat.stat-mech)Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsFOS: Physical sciencesGeneral Physics and AstronomyTourbillonStatistical mechanicsFermionRotationVortexPhysics::Fluid DynamicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Wave functionQuantumCondensed Matter - Statistical MechanicsBosonPhysical review letters
researchProduct

M6_Microfluidics_for_CNT

2018

The hydrodynamic trap holds an incoming droplet until the arrival of following droplet. The previous droplet leaves the trap in very rapid manner.

Condensed Matter::Quantum GasesPhysics::Fluid Dynamicsendocrine systemtrap occupation timetechnology industry and agriculturePhysics::Atomic and Molecular ClustersmicrofluidicsPhysics::Atomic Physicscomplex mixturesdroplet trapeye diseases
researchProduct