Search results for "Formal language"
showing 10 items of 357 documents
Periodicity vectors for labelled trees
2003
AbstractThe concept of a periodicity vector is introduced in the context of labelled trees, and some new periodicity theorems are obtained. These results constitute generalizations of the classical periodicity theorem of Fine and Wilf for words. The concept of a tree congruence is also generalized and the isomorphism between the lattice of tree congruences and the lattice of unlabelled trees (prefix codes) is established.
A loopless algorithm for generating the permutations of a multiset
2003
AbstractMany combinatorial structures can be constructed from simpler components. For example, a permutation can be constructed from cycles, or a Motzkin word from a Dyck word and a combination. In this paper we present a constructor for combinatorial structures, called shuffle on trajectories (defined previously in a non-combinatorial context), and we show how this constructor enables us to obtain a new loopless generating algorithm for multiset permutations from similar results for simpler objects.
An extension of the Burrows-Wheeler Transform
2007
AbstractWe describe and highlight a generalization of the Burrows–Wheeler Transform (bwt) to a multiset of words. The extended transformation, denoted by ebwt, is reversible. Moreover, it allows to define a bijection between the words over a finite alphabet A and the finite multisets of conjugacy classes of primitive words in A∗. Besides its mathematical interest, the extended transform can be useful for applications in the context of string processing. In the last part of this paper we illustrate one such application, providing a similarity measure between sequences based on ebwt.
A Logical Characterisation of Linear Time on Nondeterministic Turing Machines
1999
The paper gives a logical characterisation of the class NTIME(n) of problems that can be solved on a nondeterministic Turing machine in linear time. It is shown that a set L of strings is in this class if and only if there is a formula of the form ∃f1..∃fk∃R1..∃Rm∀xφv; that is true exactly for all strings in L. In this formula the fi are unary function symbols, the Ri are unary relation symbols and φv; is a quantifierfree formula. Furthermore, the quantification of functions is restricted to non-crossing, decreasing functions and in φv; no equations in which different functions occur are allowed. There are a number of variations of this statement, e.g., it holds also for k = 3. From these r…
Language Recognition Power and Succinctness of Affine Automata
2016
In this work we study a non-linear generalization based on affine transformations of probabilistic and quantum automata proposed recently by Diaz-Caro and Yakaryilmaz [6] referred as affine automata. First, we present efficient simulations of probabilistic and quantum automata by means of affine automata which allows us to characterize the class of exclusive stochastic languages. Then, we initiate a study on the succintness of affine automata. In particular, we show that an infinite family of unary regular languages can be recognized by 2-state affine automata, whereas the number of states of any quantum and probabilistic automata cannot be bounded. Finally, we present the characterization …
On the Class of Languages Recognizable by 1-Way Quantum Finite Automata
2007
It is an open problem to characterize the class of languages recognized by quantum finite automata (QFA). We examine some necessary and some sufficient conditions for a (regular) language to be recognizable by a QFA. For a subclass of regular languages we get a condition which is necessary and sufficient. Also, we prove that the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.
Quantum Pushdown Automata
2000
Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [13]. In this paper we introduce the notion of quantum pushdown automata (QPA) in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of [11]. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines [4]. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, two of them are not recognizable by deterministic pushdown automata and one seems to be not recognizable by probabilistic pushdown …
One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata
2013
We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.
Artin’s Conjecture and Size of Finite Probabilistic Automata
2008
Size (the number of states) of finite probabilistic automata with an isolated cut-point can be exponentially smaller than the size of any equivalent finite deterministic automaton. The result is presented in two versions. The first version depends on Artin's Conjecture (1927) in Number Theory. The second version does not depend on conjectures but the numerical estimates are worse. In both versions the method of the proof does not allow an explicit description of the languages used. Since our finite probabilistic automata are reversible, these results imply a similar result for quantum finite automata.
The complexity of probabilistic versus deterministic finite automata
1996
We show that there exists probabilistic finite automata with an isolated cutpoint and n states such that the smallest equivalent deterministic finite automaton contains \(\Omega \left( {2^{n\tfrac{{\log \log n}}{{\log n}}} } \right)\) states.