Search results for "Formal languages"
showing 10 items of 322 documents
On Combinatorial Generation of Prefix Normal Words
2014
A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present an efficient algorithm for exhaustively listing the prefix normal words with a fixed length. The algorithm is based on the fact that the language of prefix normal words is a bubble language, a class of binary languages with the property that, for any word w in the language, exchanging the first occurrence of 01 by 10 in w results in another word in the language. We prove that each prefix normal word is produced in O(n) amortized time, and conjecture, based on expe…
A NEW COMPLEXITY FUNCTION FOR WORDS BASED ON PERIODICITY
2013
Motivated by the extension of the critical factorization theorem to infinite words, we study the (local) periodicity function, i.e. the function that, for any position in a word, gives the size of the shortest square centered in that position. We prove that this function characterizes any binary word up to exchange of letters. We then introduce a new complexity function for words (the periodicity complexity) that, for any position in the word, gives the average value of the periodicity function up to that position. The new complexity function is independent from the other commonly used complexity measures as, for instance, the factor complexity. Indeed, whereas any infinite word with bound…
Research of Complex Forms in Cellular Automata by Evolutionary Algorithms
2004
This paper presents an evolutionary approach for the search for new complex cellular automata. Two evolutionary algorithms are used: the first one discovers rules supporting gliders and periodic patterns, and the second one discovers glider guns in cellular automata. An automaton allowing us to simulate AND and NOT gates is discovered. The results are a step toward the general simulation of Boolean circuits by this automaton and show that the evolutionary approach is a promising technic for searching for cellular automata that support universal computation.
A New Universal Cellular Automaton Discovered by Evolutionary Algorithms
2004
In Twenty Problems in the Theory of Cellular Automata, Stephen Wolfram asks “how common computational universality and undecidability [are] in cellular automata.” This papers provides elements of answer, as it describes how another universal cellular automaton than the Game of Life (Life) was sought and found using evolutionary algorithms. This paper includes a demonstration that consists in showing that the presented R automaton can both implement any logic circuit (logic universality) and a simulation of Life (universality in the Turing sense).
On the lattice of prefix codes
2002
AbstractThe natural correspondence between prefix codes and trees is explored, generalizing the results obtained in Giammarresi et al. (Theoret. Comput. Sci. 205 (1998) 1459) for the lattice of finite trees under division and the lattice of finite maximal prefix codes. Joins and meets of prefix codes are studied in this light in connection with such concepts as finiteness, maximality and varieties of rational languages. Decidability results are obtained for several problems involving rational prefix codes, including the solution to the primeness problem.
On the decomposition of prefix codes
2017
Abstract In this paper we focus on the decomposition of rational and maximal prefix codes. We present an effective procedure that allows us to decide whether such a code is decomposable. In this case, the procedure also produces the factors of some of its decompositions. We also give partial results on the problem of deciding whether a rational maximal prefix code decomposes over a finite prefix code.
Pseudocomplements in sum-ordered partial semirings
2007
We study a particular way of introducing pseudocomplementation in ordered semigroups with zero, and characterise the class of those pseudocomplemented semigroups, termed g-semigroups here, that admit a Glivenko type theorem (the pseudocomplements form a Boolean algebra). Some further results are obtained for g-semirings – those sum-ordered partially additive semirings whose multiplicative part is a g-semigroup. In particular, we introduce the notion of a partial Stone semiring and show that several well-known elementary characteristics of Stone algebras have analogues for such semirings.
On Horn spectra
1991
Abstract A Horn spectrum is a spectrum of a Horn sentence. We show that to solve Asser's problem, and consequently the EXPTIME = ? NEXPTIME question it suffices to consider the class of Horn spectra. We also pose the problem whether or not the generator of every Horn spectrum is a spectrum. We prove that from a negative solution of the generator problem, a negative answer for the EXPTIME = ? NEXPTIME question follows. Some other relations between the generator problem and Asser's problem are given. Finally, the relativized version of the generator problem is formulated and it is shown that it has an affirmative solution for some oracles, and a negative solution for some others.
The dual equivalence of equations and coequations for automata
2015
The transition structure α : X ? X A of a deterministic automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. We use this algebra-coalgebra duality as a common perspective for the study of equations and coequations. For every automaton ( X , α ) , we define two new automata: free ( X , α ) and cofree ( X , α ) representing, respectively, the greatest set of equations and the smallest set of coequations satisfied by ( X , α ) . Both constructions are shown to be functorial. Our main result is that the restrictions of free and cofree to, respectively, preformations of languages and to quotients A * / C of A * with respect to a congr…
Languages with mismatches
2007
AbstractIn this paper we study some combinatorial properties of a class of languages that represent sets of words occurring in a text S up to some errors. More precisely, we consider sets of words that occur in a text S with k mismatches in any window of size r. The study of this class of languages mainly focuses both on a parameter, called repetition index, and on the set of the minimal forbidden words of the language of factors of S with errors. The repetition index of a string S is defined as the smallest integer such that all strings of this length occur at most in a unique position of the text S up to errors. We prove that there is a strong relation between the repetition index of S an…