Search results for "Formal languages"

showing 10 items of 322 documents

On Combinatorial Generation of Prefix Normal Words

2014

A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present an efficient algorithm for exhaustively listing the prefix normal words with a fixed length. The algorithm is based on the fact that the language of prefix normal words is a bubble language, a class of binary languages with the property that, for any word w in the language, exchanging the first occurrence of 01 by 10 in w results in another word in the language. We prove that each prefix normal word is produced in O(n) amortized time, and conjecture, based on expe…

Amortized analysisConjecturePrefix Normal WordBinary numbercombinatorial generation; formal languages; prefix normal words; binary strings; jumbled pattern matching; bubble languages; efficient algorithmsContext (language use)prefix normal wordsData_CODINGANDINFORMATIONTHEORYformal languagesbubble languagesSubstringcombinatorial generationbinary stringsPrefixCombinatoricsjumbled pattern matchingefficient algorithmsPattern matchingAlgorithmsWord (computer architecture)Mathematics
researchProduct

A NEW COMPLEXITY FUNCTION FOR WORDS BASED ON PERIODICITY

2013

Motivated by the extension of the critical factorization theorem to infinite words, we study the (local) periodicity function, i.e. the function that, for any position in a word, gives the size of the shortest square centered in that position. We prove that this function characterizes any binary word up to exchange of letters. We then introduce a new complexity function for words (the periodicity complexity) that, for any position in the word, gives the average value of the periodicity function up to that position. The new complexity function is independent from the other commonly used complexity measures as, for instance, the factor complexity. Indeed, whereas any infinite word with bound…

Average-case complexityDiscrete mathematicsFibonacci numberSettore INF/01 - InformaticaGeneral Mathematicscomplexity functionComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Function (mathematics)periodicitycritical factorization theoremCombinatoricsComplexity indexCombinatorics on wordsBounded functionComplexity functionComputer Science::Formal Languages and Automata TheoryWord (computer architecture)Combinatorics on wordMathematicsInternational Journal of Algebra and Computation
researchProduct

Research of Complex Forms in Cellular Automata by Evolutionary Algorithms

2004

This paper presents an evolutionary approach for the search for new complex cellular automata. Two evolutionary algorithms are used: the first one discovers rules supporting gliders and periodic patterns, and the second one discovers glider guns in cellular automata. An automaton allowing us to simulate AND and NOT gates is discovered. The results are a step toward the general simulation of Boolean circuits by this automaton and show that the evolutionary approach is a promising technic for searching for cellular automata that support universal computation.

Block cellular automatonTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESComputer sciencebusiness.industryBoolean circuitComputationGrowCut algorithmContinuous automatonTimed automatonNonlinear Sciences::Cellular Automata and Lattice GasesCellular automatonAutomatonMobile automatonStochastic cellular automatonElementary cellular automatonDeterministic automatonContinuous spatial automatonAutomata theoryArtificial intelligencebusinessComputer Science::Formal Languages and Automata TheoryAsynchronous cellular automatonQuantum cellular automaton
researchProduct

A New Universal Cellular Automaton Discovered by Evolutionary Algorithms

2004

In Twenty Problems in the Theory of Cellular Automata, Stephen Wolfram asks “how common computational universality and undecidability [are] in cellular automata.” This papers provides elements of answer, as it describes how another universal cellular automaton than the Game of Life (Life) was sought and found using evolutionary algorithms. This paper includes a demonstration that consists in showing that the presented R automaton can both implement any logic circuit (logic universality) and a simulation of Life (universality in the Turing sense).

Block cellular automatonTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESTheoretical computer sciencebusiness.industryContinuous automatonNonlinear Sciences::Cellular Automata and Lattice GasesCellular automatonReversible cellular automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESStochastic cellular automatonElementary cellular automatonWolfram codeLife-like cellular automatonArtificial intelligencebusinessComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

On the lattice of prefix codes

2002

AbstractThe natural correspondence between prefix codes and trees is explored, generalizing the results obtained in Giammarresi et al. (Theoret. Comput. Sci. 205 (1998) 1459) for the lattice of finite trees under division and the lattice of finite maximal prefix codes. Joins and meets of prefix codes are studied in this light in connection with such concepts as finiteness, maximality and varieties of rational languages. Decidability results are obtained for several problems involving rational prefix codes, including the solution to the primeness problem.

Block codeDiscrete mathematicsPrefix codeGeneral Computer ScienceRational languagesJoinsKraft's inequalityDecidabilityTheoretical Computer SciencePrefixCombinatoricsLattice (order)Computer Science::Formal Languages and Automata TheoryMathematicsComputer Science(all)Theoretical Computer Science
researchProduct

On the decomposition of prefix codes

2017

Abstract In this paper we focus on the decomposition of rational and maximal prefix codes. We present an effective procedure that allows us to decide whether such a code is decomposable. In this case, the procedure also produces the factors of some of its decompositions. We also give partial results on the problem of deciding whether a rational maximal prefix code decomposes over a finite prefix code.

Block codePrefix codeGeneral Computer ScienceComputer science0102 computer and information sciences02 engineering and technologyPrefix grammarKraft's inequality01 natural sciencesPrefix codeTheoretical Computer SciencePrefix codes; Finite automata; Composition of codesComposition of codes0202 electrical engineering electronic engineering information engineeringDiscrete mathematicsSelf-synchronizing codeFinite-state machineSettore INF/01 - InformaticaComputer Science (all)Rational languageLinear codePrefixComposition of code010201 computation theory & mathematicsPrefix codes020201 artificial intelligence & image processingFinite automataComputer Science::Formal Languages and Automata Theory
researchProduct

Pseudocomplements in sum-ordered partial semirings

2007

We study a particular way of introducing pseudocomplementation in ordered semigroups with zero, and characterise the class of those pseudocomplemented semigroups, termed g-semigroups here, that admit a Glivenko type theorem (the pseudocomplements form a Boolean algebra). Some further results are obtained for g-semirings – those sum-ordered partially additive semirings whose multiplicative part is a g-semigroup. In particular, we introduce the notion of a partial Stone semiring and show that several well-known elementary characteristics of Stone algebras have analogues for such semirings.

Class (set theory)Algebra and Number TheorySemigroupApplied MathematicsBoolean algebra (structure)Multiplicative functionZero (complex analysis)Type (model theory)SemiringKleene algebraCombinatoricssymbols.namesakesymbolsComputer Science::Formal Languages and Automata TheoryMathematicsDiscussiones Mathematicae - General Algebra and Applications
researchProduct

On Horn spectra

1991

Abstract A Horn spectrum is a spectrum of a Horn sentence. We show that to solve Asser's problem, and consequently the EXPTIME = ? NEXPTIME question it suffices to consider the class of Horn spectra. We also pose the problem whether or not the generator of every Horn spectrum is a spectrum. We prove that from a negative solution of the generator problem, a negative answer for the EXPTIME = ? NEXPTIME question follows. Some other relations between the generator problem and Asser's problem are given. Finally, the relativized version of the generator problem is formulated and it is shown that it has an affirmative solution for some oracles, and a negative solution for some others.

Class (set theory)NEXPTIMEGeneral Computer ScienceFrench hornComputabilitySpectrum (functional analysis)EXPTIMEOracleTheoretical Computer ScienceCombinatoricsComputer Science::Logic in Computer ScienceComputer Science::Formal Languages and Automata TheoryComputer Science(all)Generator (mathematics)MathematicsTheoretical Computer Science
researchProduct

The dual equivalence of equations and coequations for automata

2015

The transition structure α : X ? X A of a deterministic automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. We use this algebra-coalgebra duality as a common perspective for the study of equations and coequations. For every automaton ( X , α ) , we define two new automata: free ( X , α ) and cofree ( X , α ) representing, respectively, the greatest set of equations and the smallest set of coequations satisfied by ( X , α ) . Both constructions are shown to be functorial. Our main result is that the restrictions of free and cofree to, respectively, preformations of languages and to quotients A * / C of A * with respect to a congr…

CoalgebraData ScienceCongruence relationComputer Science ApplicationsTheoretical Computer ScienceAutomatonCombinatoricsComputational Theory and MathematicsDeterministic automatonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAlphabetEquivalence (formal languages)QuotientInformation SystemsMathematics
researchProduct

Languages with mismatches

2007

AbstractIn this paper we study some combinatorial properties of a class of languages that represent sets of words occurring in a text S up to some errors. More precisely, we consider sets of words that occur in a text S with k mismatches in any window of size r. The study of this class of languages mainly focuses both on a parameter, called repetition index, and on the set of the minimal forbidden words of the language of factors of S with errors. The repetition index of a string S is defined as the smallest integer such that all strings of this length occur at most in a unique position of the text S up to errors. We prove that there is a strong relation between the repetition index of S an…

Combinatorics on wordsApproximate string matchingGeneral Computer ScienceRepetition (rhetorical device)String (computer science)Search engine indexingComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Approximate string matchingData structureTheoretical Computer ScienceCombinatoricsSet (abstract data type)Formal languagesCombinatorics on words Formal languages Approximate string matching IndexingIndexingWord (group theory)MathematicsInteger (computer science)Computer Science(all)Theoretical Computer Science
researchProduct