6533b7d0fe1ef96bd125ad9e

RESEARCH PRODUCT

On Combinatorial Generation of Prefix Normal Words

Gabriele FiciJoe SawadaFrank RuskeyPéter BurcsiZsuzsanna Lipták

subject

Amortized analysisConjecturePrefix Normal WordBinary numbercombinatorial generation; formal languages; prefix normal words; binary strings; jumbled pattern matching; bubble languages; efficient algorithmsContext (language use)prefix normal wordsData_CODINGANDINFORMATIONTHEORYformal languagesbubble languagesSubstringcombinatorial generationbinary stringsPrefixCombinatoricsjumbled pattern matchingefficient algorithmsPattern matchingAlgorithmsWord (computer architecture)Mathematics

description

A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present an efficient algorithm for exhaustively listing the prefix normal words with a fixed length. The algorithm is based on the fact that the language of prefix normal words is a bubble language, a class of binary languages with the property that, for any word w in the language, exchanging the first occurrence of 01 by 10 in w results in another word in the language. We prove that each prefix normal word is produced in O(n) amortized time, and conjecture, based on experimental evidence, that the true amortized running time is O(polylog(n)).

https://doi.org/10.1007/978-3-319-07566-2_7