On Combinatorial Generation of Prefix Normal Words
A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present an efficient algorithm for exhaustively listing the prefix normal words with a fixed length. The algorithm is based on the fact that the language of prefix normal words is a bubble language, a class of binary languages with the property that, for any word w in the language, exchanging the first occurrence of 01 by 10 in w results in another word in the language. We prove that each prefix normal word is produced in O(n) amortized time, and conjecture, based on expe…
ALGORITHMS FOR JUMBLED PATTERN MATCHING IN STRINGS
The Parikh vector p(s) of a string s is defined as the vector of multiplicities of the characters. Parikh vector q occurs in s if s has a substring t with p(t)=q. We present two novel algorithms for searching for a query q in a text s. One solves the decision problem over a binary text in constant time, using a linear size index of the text. The second algorithm, for a general finite alphabet, finds all occurrences of a given Parikh vector q and has sub-linear expected time complexity; we present two variants, which both use a linear size index of the text.
Generating a Gray code for prefix normal words in amortized polylogarithmic time per word
A prefix normal word is a binary word with the property that no substring has more $1$s than the prefix of the same length. By proving that the set of prefix normal words is a bubble language, we can exhaustively list all prefix normal words of length $n$ as a combinatorial Gray code, where successive strings differ by at most two swaps or bit flips. This Gray code can be generated in $\Oh(\log^2 n)$ amortized time per word, while the best generation algorithm hitherto has $\Oh(n)$ running time per word. We also present a membership tester for prefix normal words, as well as a novel characterization of bubble languages.
On prefix normal words and prefix normal forms
A $1$-prefix normal word is a binary word with the property that no factor has more $1$s than the prefix of the same length; a $0$-prefix normal word is defined analogously. These words arise in the context of indexed binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given number of $1$s and $0$s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class of binary words having the same set of Parikh vectors of their factors. We prove that the language of prefix normal words is not context-free and is strictly contai…
On Table Arrangements, Scrabble Freaks, and Jumbled Pattern Matching
Given a string s, the Parikh vector of s, denoted p(s), counts the multiplicity of each character in s. Searching for a match of Parikh vector q (a “jumbled string”) in the text s requires to find a substring t of s with p(t) = q. The corresponding decision problem is to verify whether at least one such match exists. So, for example for the alphabet Σ = {a, b, c}, the string s = abaccbabaaa has Parikh vector p(s) = (6,3,2), and the Parikh vector q = (2,1,1) appears once in s in position (1,4). Like its more precise counterpart, the renown Exact String Matching, Jumbled Pattern Matching has ubiquitous applications, e.g., string matching with a dyslectic word processor, table rearrangements, …
On Approximate Jumbled Pattern Matching in Strings
Given a string s, the Parikh vector of s, denoted p(s), counts the multiplicity of each character in s. Searching for a match of a Parikh vector q in the text s requires finding a substring t of s with p(t) = q. This can be viewed as the task of finding a jumbled (permuted) version of a query pattern, hence the term Jumbled Pattern Matching. We present several algorithms for the approximate version of the problem: Given a string s and two Parikh vectors u, v (the query bounds), find all maximal occurrences in s of some Parikh vector q such that u <= q <= v. This definition encompasses several natural versions of approximate Parikh vector search. We present an algorithm solving this problem …
Normal, Abby Normal, Prefix Normal
A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present results about the number \(\textit{pnw}(n)\) of prefix normal words of length n, showing that \(\textit{pnw}(n) =\Omega\left(2^{n - c\sqrt{n\ln n}}\right)\) for some c and \(\textit{pnw}(n) = O \left(\frac{2^n (\ln n)^2}{n}\right)\). We introduce efficient algorithms for testing the prefix normal property and a “mechanical algorithm” for computing prefix normal forms. We also include games which can be played with prefix normal words. In these games Alice wishes t…