Search results for "Formal languages"

showing 10 items of 322 documents

The complexity of graph languages generated by hyperedge replacement

1990

Although in many ways, hyperedge replacement graph grammars (HRGs) are, among all graph generating mechanisms, what context-free Chomsky grammars are in the realm of string rewriting, their parsing problem is known to be, in general, NP-complete. In this paper, the main difficulty in HRG parsing is analysed and some conditions on either grammar or input graphs are developed under which parsing can be done in polynomial time. For some of the cases, the parsing problem is shown to be log-space reducible to context-free string parsing.

ParsingTheoretical computer scienceComputer Networks and CommunicationsComputer sciencebusiness.industryComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Parsing expression grammarcomputer.software_genreTop-down parsingTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESParser combinatorS-attributed grammarTop-down parsing languageArtificial intelligenceL-attributed grammarbusinesscomputerComputer Science::Formal Languages and Automata TheorySoftwareNatural language processingInformation SystemsBottom-up parsingActa Informatica
researchProduct

Patterns in words and languages

2004

AbstractA word p, over the alphabet of variables E, is a pattern of a word w over A if there exists a non-erasing morphism h from E∗ to A∗ such that h(p)=w. If we take E=A, given two words u,v∈A∗, we write u⩽v if u is a pattern of v. The restriction of ⩽ to aA∗, where A is the binary alphabet {a,b}, is a partial order relation. We introduce, given a word v, the set P(v) of all words u such that u⩽v. P(v), with the relation ⩽, is a poset and it is called the pattern poset of v. The first part of the paper is devoted to investigate the relationships between the structure of the poset P(v) and the combinatorial properties of the word v. In the last section, for a given language L, we consider …

PatternApplied MathematicsPartial order on wordStructure (category theory)Set (abstract data type)CombinatoricsFormal languagesSection (category theory)MorphismRegular languagePartial order on wordsDiscrete Mathematics and CombinatoricsOrder (group theory)Partially ordered setWord (group theory)MathematicsDiscrete Applied Mathematics
researchProduct

Logics and operators

2003

Two connectives are of special interest in metalogical investigations — the connective of implication which is important due to its connections to the notion of inference, and the connective of equivalence. The latter connective expresses, in the material sense, the fact that two sentences have the same logical value while in the strict sense it expresses the fact that two sentences are interderivable on the basis of a given logic. The process of identification of equivalent sentences relative to theories of a logic C defines a class of abstract algebras. The members of the class are called Lindenbaum-Tarski algebras of the logic C. One may abstract from the origin of these algebras and exa…

PhilosophyPure mathematicsComputer Science::Logic in Computer ScienceTruth valueInferenceAlgebraic numberEquivalence (formal languages)Logical connectiveMathematicsLogic and Logical Philosophy
researchProduct

Resetting of a planar superconducting quantum memory

2009

We consider and analyze a scheme for the reset of a M × N planar array of inductively coupled Josephson flux qubits. We prove that it is possible to minimize the resetting time of an arbitrary chosen row of qubits by properly switching on and off the coupling between pairs of qubits belonging to the same column. In addition, the analysis of the time evolution of the array allows us to single out the class of generalized W states which can be successfully reset.

PhysicsFlux qubitSquidsPlanar arrayTime evolutionJosephson deviceQuantum PhysicsQuantum entanglementSettore FIS/03 - Fisica Della MateriaComputer Science::Emerging TechnologiesQuantum mechanicsQubitQuantum computationSuperconducting quantum computingReset (computing)Computer Science::Formal Languages and Automata TheoryQuantum computerEntanglement production and manipulation
researchProduct

InternallyK-like spaces and internal inverse limits

2014

Abstract We establish equivalences between compacta that admit mappings that limit to the identity, and compacta that are inverse limits of the images under these maps. Our results have relationships to Mardesic and Segalʼs equivalence between polyhedra-like compacta and inverse limits of polyhedra, to the Anderson–Choquet Embedding Theorem, to approximative absolute neighborhood retracts, and to continua that are approximated from within as defined by C.A. Eberhart and J.B. Fugate.

PolyhedronPure mathematicsMathematical analysisInverseEmbeddingGeometry and TopologyEquivalence (formal languages)MathematicsTopology and its Applications
researchProduct

Minimal Absent Words in Rooted and Unrooted Trees

2019

We extend the theory of minimal absent words to (rooted and unrooted) trees, having edges labeled by letters from an alphabet \(\varSigma \) of cardinality \(\sigma \). We show that the set \(\text {MAW}(T)\) of minimal absent words of a rooted (resp. unrooted) tree T with n nodes has cardinality \(O(n\sigma )\) (resp. \(O(n^{2}\sigma )\)), and we show that these bounds are realized. Then, we exhibit algorithms to compute all minimal absent words in a rooted (resp. unrooted) tree in output-sensitive time \(O(n+|\text {MAW}(T)|)\) (resp. \(O(n^{2}+|\text {MAW}(T)|)\) assuming an integer alphabet of size polynomial in n.

Polynomial (hyperelastic model)050101 languages & linguistics05 social sciencesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)02 engineering and technologyCombinatoricsTree (descriptive set theory)CardinalityInteger0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0501 psychology and cognitive sciencesAlphabetMinimal Absent Words Rooted trees Unrooted Trees AlgorithmsNonlinear Sciences::Pattern Formation and SolitonsComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

On the Size Complexity of Deterministic Frequency Automata

2013

Austinat, Diekert, Hertrampf, and Petersen [2] proved that every language L that is (m,n)-recognizable by a deterministic frequency automaton such that m > n/2 can be recognized by a deterministic finite automaton as well. First, the size of deterministic frequency automata and of deterministic finite automata recognizing the same language is compared. Then approximations of a language are considered, where a language L′ is called an approximation of a language L if L′ differs from L in only a finite number of strings. We prove that if a deterministic frequency automaton has k states and (m,n)-recognizes a language L, where m > n/2, then there is a language L′ approximating L such that L′ c…

Powerset constructionPushdown automatonComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Nonlinear Sciences::Cellular Automata and Lattice GasesCombinatoricsDeterministic pushdown automatonDeterministic finite automatonDeterministic automatonComputer Science::Programming LanguagesQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Monadic second-order logic over pictures and recognizability by tiling systems

1994

We show that a set of pictures (rectangular arrays of symbols) is recognized by a finite tiling system if and only if it is definable in existential monadic second-order logic. As a consequence, finite tiling systems constitute a notion of recognizability over two-dimensional inputs which at the same time generalizes finite-state recognizability over strings and matches a natural logic. The proof is based on the Ehrenfeucht-FraIsse technique for first-order logic and an implementation of “threshold counting” within tiling systems.

Predicate logicDiscrete mathematicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Logic in Computer ScienceSubstructural logicSecond-order logicMultimodal logicDynamic logic (modal logic)Intermediate logicHigher-order logicComputer Science::Formal Languages and Automata TheoryMonadic predicate calculusMathematics
researchProduct

Monadic Second-Order Logic over Rectangular Pictures and Recognizability by Tiling Systems

1996

Abstract It is shown that a set of pictures (rectangular arrays of symbols) is recognized by a finite tiling system iff it is definable in existential monadic second-order logic. As a consequence, finite tiling systems constitute a notion of recognizability over two-dimensional inputs which at the same time generalizes finite-state recognizability over strings and also matches a natural logic. The proof is based on the Ehrenfeucht–Fraisse technique for first-order logic and an implementation of “threshold counting” within tiling systems.

Predicate logicMonadic second-order logicDiscrete mathematicsNatural logicIntermediate logicHigher-order logicMonadic predicate calculusComputer Science ApplicationsTheoretical Computer ScienceMathematics::LogicTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and MathematicsComputer Science::Logic in Computer ScienceMany-valued logicDynamic logic (modal logic)Computer Science::Formal Languages and Automata TheoryInformation SystemsMathematicsInformation and Computation
researchProduct

Recent results on syntactic groups of prefix codes

2012

International audience; We give a simplified presentation of groups in transformation monoids. We use this presentation to describe two recent results on syntactic groups of prefix codes. The first one uses Sturmian words to build finite bifix codes with a given permutation group as syntactic group. The second one describes a class of prefix codes such that all their syntactic groups are cyclic.

Prefix codeDiscrete mathematicsClass (set theory)Group (mathematics)010102 general mathematicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)0102 computer and information sciencesPermutation group16. Peace & justice01 natural sciencesTransformation (music)Theoretical Computer SciencePrefixTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and Mathematics[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]010201 computation theory & mathematicsDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsArithmeticComputer Science::Formal Languages and Automata Theory[INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]MathematicsEuropean Journal of Combinatorics
researchProduct