6533b828fe1ef96bd1288fc6
RESEARCH PRODUCT
Recent results on syntactic groups of prefix codes
Clelia De FeliceJean BerstelGiuseppina RindoneDominique PerrinChristophe Reutenauersubject
Prefix codeDiscrete mathematicsClass (set theory)Group (mathematics)010102 general mathematicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)0102 computer and information sciencesPermutation group16. Peace & justice01 natural sciencesTransformation (music)Theoretical Computer SciencePrefixTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and Mathematics[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]010201 computation theory & mathematicsDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsArithmeticComputer Science::Formal Languages and Automata Theory[INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]Mathematicsdescription
International audience; We give a simplified presentation of groups in transformation monoids. We use this presentation to describe two recent results on syntactic groups of prefix codes. The first one uses Sturmian words to build finite bifix codes with a given permutation group as syntactic group. The second one describes a class of prefix codes such that all their syntactic groups are cyclic.
year | journal | country | edition | language |
---|---|---|---|---|
2012-10-01 | European Journal of Combinatorics |