0000000000400587

AUTHOR

Christophe Reutenauer

showing 5 related works from this author

Cancellation, pumping and permutation in formal languages

1984

Formal grammarTheoretical computer scienceChomsky hierarchyFormal languageContext-free languageAbstract family of languagesPumping lemma for context-free languagesArithmeticCone (formal languages)Pumping lemma for regular languagesMathematics
researchProduct

Recent results on syntactic groups of prefix codes

2012

International audience; We give a simplified presentation of groups in transformation monoids. We use this presentation to describe two recent results on syntactic groups of prefix codes. The first one uses Sturmian words to build finite bifix codes with a given permutation group as syntactic group. The second one describes a class of prefix codes such that all their syntactic groups are cyclic.

Prefix codeDiscrete mathematicsClass (set theory)Group (mathematics)010102 general mathematicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)0102 computer and information sciencesPermutation group16. Peace & justice01 natural sciencesTransformation (music)Theoretical Computer SciencePrefixTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and Mathematics[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]010201 computation theory & mathematicsDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsArithmeticComputer Science::Formal Languages and Automata Theory[INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]MathematicsEuropean Journal of Combinatorics
researchProduct

Some applications of a theorem of Shirshov to language theory

1983

Some applications of a theorem of Shirshov to language theory are given: characterization of regular languages, characterization of bounded languages, and a sufficient condition for a language to be Parikh-bounded.

business.industryGeneral EngineeringComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Characterization (mathematics)computer.software_genrePhilosophy of languageAlgebraTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESRegular languageBounded functionComputer Science::Programming LanguagesArtificial intelligencebusinesscomputerNatural language processingEngineering(all)MathematicsInformation and Control
researchProduct

A bijection between words and multisets of necklaces

2012

Two of the present authors have given in 1993 a bijection Phi between words on a totally ordered alphabet and multisets of primitive necklaces. At the same time and independently, Burrows and Wheeler gave a data compression algorithm which turns out to be a particular case of the inverse of Phi. In the present article, we show that if one replaces in Phi the standard permutation of a word by the co-standard one (reading the word from right to left), then the inverse bijection is computed using the alternate lexicographic order (which is the order of real numbers given by continued fractions) on necklaces, instead of the lexicographic order as for Phi(-1). The image of the new bijection, ins…

Discrete mathematicsBurrows and Wheeler TransformMathematics::CombinatoricsSettore INF/01 - InformaticaFree Lie algebraLie superalgebrastandard permutationLexicographical orderTheoretical Computer ScienceImage (mathematics)CombinatoricsSet (abstract data type)PermutationComputational Theory and MathematicsBijectionDiscrete Mathematics and CombinatoricsGeometry and TopologyComputer Science::Formal Languages and Automata TheoryWord (group theory)MathematicsReal number
researchProduct

On generalized Lyndon words

2018

Abstract A generalized lexicographical order on infinite words is defined by choosing for each position a total order on the alphabet. This allows to define generalized Lyndon words. Every word in the free monoid can be factorized in a unique way as a nonincreasing factorization of generalized Lyndon words. We give new characterizations of the first and the last factor in this factorization as well as new characterization of generalized Lyndon words. We also give more specific results on two special cases: the classical one and the one arising from the alternating lexicographical order.

FOS: Computer and information sciencesGeneral Computer ScienceDiscrete Mathematics (cs.DM)Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)68R15Characterization (mathematics)Lexicographical orderTheoretical Computer ScienceLyndon wordsCombinatoricsFactorizationPosition (vector)Free monoidFOS: MathematicsOrder (group theory)Mathematics - CombinatoricsCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryMathematicsComputer Science - Discrete Mathematics
researchProduct