Search results for "Free surface"
showing 10 items of 42 documents
3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process
2019
Abstract A 3D quasi-stationary model for crystal ridge formation in FZ crystal growth systems for silicon is presented. Heat transfer equations for the melt and crystal are solved, and an anisotropic crystal growth model together with a free surface shape solver is used to model the facet growth and ridge formation. The simulation results for 4″ and 5″ crystals are presented and compared to experimental ridge shape data.
Sound conversion phenomena at the free surface of liquid helium. I. Calculation of the coefficients of reflection, transmission, and transformation o…
1980
On the basis of a set of boundary conditions describing quite generally mass and energy transport processes across the free surface of helium II, the acoustic coefficients of reflection, transmission, and transformation of first sound, second sound, and the sound wave propagating in the vapor are calculated in the case of perpendicular incidence of sound waves against the liquid-vapor phase boundary. Considering rigorously the influences of the Onsager surface coefficients, the isobaric thermal expansion coefficients, and the thermal conductivities of the liquid and the vapor, we derive sets of equations from which the acoustic coefficients are determined numerically. For estimations, simpl…
Numerical approach to problems of gravitational instability of geostructures with advected material boundaries
1998
SUMMARY We present a numerical approach for solving 2-D mantle flow problems where the chemical composition changes abruptly across intermediate boundaries. The method combines a Galerkin-spline technique with a method of integration over regions bounded by advected interfaces to represent discontinuous variations of material parameters. It allows direct approximation of a natural free surface position, instead of a posteriori calculation of topography from the normal stress at the upper free-slip boundary. We formulate a model where a viscous incompressible fluid filling a square box is divided into layers (not necessarily horizontal) by advected boundaries, across which the density and vi…
Numerical simulation of internal boundary-layer development and comparison with atmospheric data
2006
A finite-volume numerical model is employed to investigate the adaptation of the atmospheric boundary layer to a change in the underlying surface roughness, such as that existing in the transition from land to the free surface of a water body. Numerical results are validated by comparison with neutral stratification atmospheric data and compared with the internal boundary-layer (IBL) heights computed using a number of existing empirical formulae. The numerical analysis allows an extension of the fetch range in which the existing formulae, calibrated only by comparison with short fetch data, may be applied. An argument is offered that the spatial variability of the water surface roughness sh…
Magnetic field controlled FZ single crystal growth of intermetallic compounds
2005
Abstract Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid–liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds. This control is provided by a tailored design of the electromagnetic field and the resulting electromagnetically driven convection. Numerical simulations for the determination of the electromagnetic field configuration induced by th…
Free-surface flows solved by means of SPH schemes with numerical diffusive terms
2010
A novel system of equations has been defined which contains diffusive terms in both the continuity and energy equations and, at the leading order, coincides with a standard weakly-compressible SPH scheme with artificial viscosity. A proper state equation is used to associate the internal energy variation to the pressure field and to increase the speed of sound when strong deformations/compressions of the fluid occur. The increase of the sound speed is associated to the shortening of the time integration step and, therefore, allows a larger accuracy during both breaking and impact events. Moreover, the diffusive terms allows reducing the high frequency numerical acoustic noise and smoothing …
Incomplete self-similarity and flow velocity in gravel bed channels
2000
Velocity measurements, previously carried out using both a miniature current flowmeter and an acoustic Doppler velocimeter, are used to verify the applicability of the incomplete self-similarity theory to deduce the velocity profile in a gravel bed channel. Then, for the velocity profiles having the maximum value below the free surface and for the S-shaped profiles, the power velocity distribution is corrected using a new divergence function. For each value of the depth sediment ratio the nondimensional friction factor parameter is calculated by integration of the measured velocity distributions in the different verticals of the cross section. Finally, a semilogarithmic flow resistance equa…
Three-dimensional numerical simulations on wind- and tide-induced currents: The case of Augusta Harbour (Italy)
2014
The hydrodynamic circulation in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily, is analysed. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. To mitigate the risks connected with the industrial activities located near the harbour, it is important to analyse the hydrodynamic circulation in the coastal area. To perform such analysis, a parallel 3D numerical model is used to solve the Reynolds-averaged momentum and mass balance, employing the k-e turbulence model for the Reynolds stresses. The numerical model is parallelized usi…
Thermo-optical mirror on a free ferrofluid surface
1997
Here we report on the first, to our knowledge, direct experimental observation of giant thermo-optical mirror effect on the free surface of ferrofluid under He-Ne laser excitation. In our experiment a slightly focused laser beam of power in mW range is incident nearly normally to the surface, and a characteristic diffraction ring pattern has been observed in reflection mode. Concave surface deformation has been clearly observed at laser irradiated spot and has been explained in terms of lubrication theory approach for laser driven thermocapillary motion in thin layer of light absorbing fluid.
Unraveling the strain state of GaN down to single nanowires
2016
International audience; GaN nanowires (NWs) grown by molecular beam epitaxy are usually assumed free of strain in spite of different individual luminescence signatures. To ascertain this usual assumption, the c/a of a GaN NW assembly has been characterized using both X-ray diffraction and Raman spectroscopy, with scaling the measurement down to the single NW. Free-standing single NWs have been observed free of strain-defined as [c/a = (c/a)(o)]/(c/a)(o)-within the experimental accuracy amounting to 1.25 x 10(-4). However, in the general case, a significant portion of the NWs is coalesced, generating an average tensile strain that can be partly released by detaching the NWs from their substr…