Search results for "Friction"
showing 10 items of 352 documents
FSW of Lap and T-Joints
2010
Even if in the last years several researches have studied the Friction Stir Welding (FSW) process, it should be observed that most of these studies are concerned with the butt joint and just a few of them extend to more complex geometries. It is worthy to notice that the acquired knowledge on FSW process of butt joints is not immediately extendable to lap and T-joints. The first observation is that in butt joints the surface to be welded is vertical, while in lap and T-joints it is horizontal and placed at the bottom of the top blank to be welded; in this way a major vertical component of the material flow is required to obtain sound joints. In the FSW of lap-joints four different geometric…
Design of RC joints equipped with hybrid trussed beams and friction dampers
2021
Abstract The challenge of this research consists in the first attempt to apply a dissipative friction connection to beam-to-column joints with semi-prefabricated Hybrid Steel-Trussed Concrete Beams (HSTCB) and RC pillars cast in-situ. Nowadays, HSTCBs are widely adopted in civil and industrial buildings and, therefore, it is required to evaluate their compliance with the capacity design criteria and their seismic energy dissipation capability. However, the design of the reinforcement of such beams usually lead to the adoption of large amount of steel within the panel zone which becomes potentially vulnerable to the effects of seismic cyclic actions and dramatically reduce the dissipation ca…
Incremental forming of friction stir welded taylored sheets
2006
In the last decade sheet metal forming market has undergone substantial mutations since the development of more efficient strategies in terms of flexibility and cost reduction is strictly due. Such requirements are not consistent with traditional metal stamping processes which are characterized by complex equipment, capital and tooling costs; thus the industrial application of such processes is economically convenient just for large scale productions. For this reason most of the research work developed in the last years has been focused on the development of new sheet forming processes able to achieve the above discussed goals. Contemporary, with particular reference to the automotive indus…
Control of hysteretic instability in rotating machinery by elastic suspension systems subject to dry and viscous friction
2010
Abstract Most of the undesired whirling motions of rotating machines can be efficiently reduced by supporting journal boxes elastically and controlling their movement by viscous dampers or by dry friction surfaces normal to the shaft axis, which rub against the frame. In the case of dry dampers, resonance ranges of the floating support configuration can be easily cut off by planning a motionless adhesive state of the friction surfaces. On the contrary, the dry friction contact must change automatically into sliding conditions when the fixed support resonances are to be feared. Moreover, the whirl amplitude can be restrained throughout the speed range by a proper choice of the suspension-to-…
Comments on “Measurement of dimensionless Chezy coefficient in step-pool reach (Case study of Dizin River in Iran)” by Torabizadeh A., Tahershamsi A.…
2018
This paper is a comment on a previous published paper.
Flow Resistance in Step-Pool Rills
2017
Rills evolve morphologically, and the adjustment of rill channel geometry to flow affects the relationships among velocity, discharge, and slope. The resistance to flow in step-pool rills is mainly due to form-induced mechanisms and, in comparison, grain resistance is of minor significance. Previous studies on rill flow resistance have been performed exclusively for grainresistance conditions and use a stream flow equation. In this study, a new flow resistance equation, deduced by applying dimensional analysis and self-similarity theory, was applied to rill flow in step-pool channels. First, the incomplete self-similarity hypothesis was used for establishing a power flow velocity profile wh…
Rill flow resistance law under sediment transport
2021
Abstract Purpose In this paper, a deduced flow resistance equation for open-channel flow was tested using measurements carried out in mobile bed rills with sediment-laden flows and fixed bed rills. The main aims were to (i) assess the effect of sediment transport on rill flow resistance, and (ii) test the slope-flow velocity relationship in fixed bed rills. Methods The following analysis was developed: (i) a relationship between the Γ function of the velocity profile, the rill slope and the Froude number was calibrated using measurements carried out on fixed bed rills; (ii) the component of Darcy-Weisbach friction factor due to sediment transport was deduced using the corresponding measurem…
Flow Resistance Law in Channels with Flexible Submerged Vegetation
2005
In this paper, experimental data collected in a straight flume having a bed covered by grasslike vegetation have been used to analyze flow resistance for flexible submerged elements. At first, the measurements are used to test the applicability of Kouwen’s method. Then, a calibration of two coefficients appearing in the semilogarithmic flow resistance equation is carried out. Finally, applying the P-theorem and the incomplete self-similarity condition, a flow resistance equation linking the friction factor with the shear Reynolds number, the depth-vegetation height ratio and the inflection degree is deduced.
Analysis of microsphere oblique impact with planar surfaces based on the independent friction-restitution approach
2020
The independent friction restitution closure (IFR) previously applied to describe planar oblique impact of a homogeneous sphere on an infinitely massive rough plane is applied here to microsphere collisions and is extended to describe horizontal launch experiments. The model provides analytical solutions of the motion equations based on a unique set of values of the coefficients of normal and tangential restitution and friction. Comparison with experimental data in literature for the impact of microspheres of diameter <100 mu m yields a satisfactory agreement between experimentation and theory.
Physics of agarose fluid gels: Rheological properties and microstructure
2021
Agarose, a strongly gelling polysaccharide, is a common ingredient used to optimize the viscoelastic properties of a multitude of food products. Through aggregation of double helices via hydrogen bonds while cooling under quiescent conditions it forms firm and brittle gels. However, this behavior can be altered by manipulating the processing conditions viz shear. For example, gelation under shear leads to microgel particles with large surface area, which in turn leads to completely different rheological properties and texture. Such fluid gels are shown to play an important role in texture modification of foods and beverages for dysphagia patients. In this study, different concentration of a…