Search results for "Friction"

showing 10 items of 352 documents

Single block 3D numerical model for linear friction welding of titanium alloy

2018

A two-stage approach for the simulation of Linear Friction Welding is presented. The proposed model, developed using the commercial simulation package DEFORM, is 3D Lagrangian, thermo-mechanically coupled. The first phase of the process was modelled with two distinct workpieces, while the remaining phases were simulated using a single-block model. The Piwnik–Plata criterion was set up and used to determine the shifting from the dual object to the single-block model. The model, validated against experimental temperature measurements, is able to predict the main field variables distributions with varying process parameters. Titanium alpha and beta phases evolution during the whole process has…

0209 industrial biotechnologyMaterials scienceFinite element method titanium linear friction welding Ti6Al4VTitanium alloychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsFinite element methodsymbols.namesake020901 industrial engineering & automationchemistryBlock (telecommunications)symbolsGeneral Materials ScienceFriction weldingComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneLagrangianTitanium
researchProduct

Residual stress measurement in innovative friction stir welding processes

2017

In recent years, important innovations have been introduced in Friction Stir Welding (FSW) technology such as, for example, the Laser assisted Friction Stir Welding (LFSW) and in-process Cooled Friction Stir Welding (CFSW). Residual stresses have a fundamental role in welded structures because they affect the way to design the structures, fatigue life, corrosion resistance and many other material properties. Consequently, it is important to investigate the residual stress distribution in FSW where, though the heat input is lower compared to traditional welding techniques, the constraints applied to the parts to weld are more severe. The aim of the present work is to verify the capabilities …

0209 industrial biotechnologyMaterials scienceFriction Stir Welding; In-process Cooled Friction Stir Welding; Laser assisted Friction Stir Welding; Residual stress; X-ray diffraction; Materials Science (all); Mechanics of Materials; Mechanical EngineeringLaser assisted Friction Stir WeldingFriction Stir WeldingResidual stress02 engineering and technologyWeldinglaw.invention020901 industrial engineering & automationlawResidual stressFriction stir weldingGeneral Materials ScienceFriction weldingComposite materialMechanical EngineeringMetallurgyIn-process Cooled Friction Stir Welding021001 nanoscience & nanotechnologyStrength of materialsX-ray diffractionMechanics of MaterialsMaterials Science (all)0210 nano-technologyresidual stress friction stir welding laser assisted friction stir welding in-process cooled friction stir welding x-ray diffraction
researchProduct

In-process control strategies for friction stir welding of AZ31 sheets with non-uniform thickness

2017

Two different in-process control strategies were developed and compared with the aim to produce AZ31 magnesium alloy joints by friction stir welding on sheet blanks with a non-uniform thickness. To this purpose, sheets with dip or hump zones were welded by either changing the rotational speed or the tool plunging in order to keep constant the value of the vertical force occurring during the welding stage of the process. The influence of the main process parameters on the tool force, the micro- and macromechanical properties, and the joints microstructures in the dip and hump zones were analyzed. The results showed that using the rotational speed change-based approach, the hump zones are sub…

0209 industrial biotechnologyMaterials scienceFriction stir welding02 engineering and technologyWeldingRotationIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationlawTailor welded blankFriction stir weldingComposite materialMagnesium alloyJoint (geology)Settore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMechanical EngineeringMetallurgyRotational speedComputer Science Applications1707 Computer Vision and Pattern Recognition021001 nanoscience & nanotechnologyMicrostructureGrain sizeComputer Science ApplicationsControl and Systems Engineering0210 nano-technologyMagnesium alloySoftware
researchProduct

Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties

2018

Abstract Friction Stir Extrusion is an innovative direct-recycling technology developed for metal machining chips. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be recycled. The stirring action of the die prompts solid bonding phenomena allowing the back extrusion of a full dense rod. One of the main weakness of this technology is the discontinuity of the process itself that limits the extrudates volume to the capacity of the chamber. In order to overcome that limitation, a dedicated extrusion fixture has to be developed, keeping into account the concurrent needs of a continuous machine. The geometry of the die has to ensure proper press…

0209 industrial biotechnologyMaterials scienceMetal machiningMechanical engineering02 engineering and technologyFixtureMachine design021001 nanoscience & nanotechnologyChipIndustrial and Manufacturing EngineeringChip recycling020901 industrial engineering & automationArtificial IntelligenceMachine designContinuous Friction Stir ExtrusionExtrusion0210 nano-technologyProcedia Manufacturing
researchProduct

Friction Stir Welding of Ti6Al4V complex geometries for aeronautical applications: a feasibility study

2020

Abstract While Friction Stir Welding (FSW) of aluminium alloys can be considered a mature technology, even for complex joint morphologies, as T joints welded “in transparency”, welding of hard material still presents several open issues. In fact, welding of titanium alloys is a challenging process due to the chemical, mechanical and thermal characteristics of such materials which are subjected to atmosphere contamination resulting in joint hydrogen, oxygen and nitrogen embrittlement; additionally, due to the high melting temperature, large distortion and residual stress are found in joints obtained by traditional fusion welding processes as gas metal arc welding, electron beam welding and l…

0209 industrial biotechnologyMaterials scienceMetallurgyFriction Stir WeldingLaser beam weldingTitanium alloy02 engineering and technologyWeldingIndustrial and Manufacturing EngineeringGas metal arc weldinglaw.inventionFusion welding020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringArtificial IntelligenceResidual stresslawT-joints.Electron beam weldingFriction stir weldingTitanium alloySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneProcedia Manufacturing
researchProduct

AZ31 magnesium alloy recycling through friction stir extrusion process

2015

Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combina…

0209 industrial biotechnologyMaterials scienceMetallurgyScrap02 engineering and technologyFixture021001 nanoscience & nanotechnologyRodMaterial flowFriction stir extrusion020901 industrial engineering & automationMachiningUltimate tensile strengthRecyclingGeneral Materials ScienceExtrusionMaterials Science (all)Magnesium alloyComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMagnesium alloyMaterial flowInternational Journal of Material Forming
researchProduct

Linear friction welding of dissimilar AA6082 and AA2011 aluminum alloys: microstructural characterization and design guidelines

2015

This paper presents the results of an experimental and numerical campaign on Linear Friction Welding of dissimilar AA2011-T8 and AA6082-T6 aluminum alloys. Experimental tests were carried out with constant oscillation amplitude and process time. Varying oscillation frequency, interface pressure, specimen geometry and mutual position were used. Grain size measurements, HV tests and EDX analysis were considered to characterize the microstructure of the joints as a function of the input process parameters. A thermal numerical model was utilized to predict the temperature profiles in the joints during the process. The obtained results allowed the identification of four weld categories: sound jo…

0209 industrial biotechnologyMaterials scienceOscillationMetallurgychemistry.chemical_element02 engineering and technologyWelding021001 nanoscience & nanotechnologyMicrostructureGrain sizeCharacterization (materials science)law.invention020901 industrial engineering & automationchemistryAluminiumlawGeneral Materials ScienceFriction weldingComposite material0210 nano-technologyLinear Friction Welding Dissimilar welds Aluminum alloys Grain sizeSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJoint (geology)International Journal of Material Forming
researchProduct

Dissimilar titanium/aluminum friction stir welding lap joints by experiments and numerical simulation

2016

Dissimilar lap joints were produced by friction stir welding (FSW) out of Ti6Al4V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by analyzing the maximum shear strength, Vickers microhardness and optical observations. A dedicated numerical model, able to take into account the presence of the two different alloys, was used to highlight the effects of the process parameters on temperature distribution, strain distribution, and material flow. The combined analysis of experimental measurements and numerical predictions allowed explaining the effects of tool rotation and feed rate on the material flow. It was found that …

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsAA2024Lap joint02 engineering and technologyWeldingRotationIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationlawShear strengthFriction stir weldingMechanics of MaterialComposite materialJoint (geology)Finite element method (FEM)Polymers and PlasticFriction stir welding (FSW)Mechanical EngineeringTi6Al4VTitanium alloy021001 nanoscience & nanotechnologyMaterial flowLap jointMechanics of Materials0210 nano-technology
researchProduct

Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications

2020

Widespread use of aluminum alloys for the fabrication of car body parts is conditional to the use of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Friction stir welding (FSW) is considered to be a reasonable solution to obtain sound aluminum-steel joints. In this context, this work studies the effects of tool position and force control in dissimilar friction stir welding of AA6061 aluminum alloy on DC05 low carbon steel in lap joint configuration, also assessing proper welding parameter settings. Naked eye and scanning electron microscopy (SEM) have been used to detect macroscopic and microscopic defects in joints, as well as t…

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsCarbon steelAlloyContext (language use)02 engineering and technologyWeldingengineering.materialIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationAA6016 aluminum alloy0203 mechanical engineeringlawFriction stir weldingComposite materialJoint (geology)Tensile testingFriction stir welding (FSW)Mechanical EngineeringDissimilar materialWelding parametersDissimilar materialsAA6016 aluminum alloy; DC05 low carbon steel; Dissimilar materials; Friction stir welding (FSW); Welding parameters020303 mechanical engineering & transportsLap jointMechanics of MaterialsDC05 low carbon steelengineering
researchProduct

Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization

2019

Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…

0209 industrial biotechnologyMaterials sciencePrimary energyAluminium alloyStrategy and ManagementAlloySustainable manufacturingchemistry.chemical_element02 engineering and technologyManagement Science and Operations Researchengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePressingWire drawingElectric potential energyMetallurgy021001 nanoscience & nanotechnologySECFriction stir extrusionchemistryengineeringExtrusion0210 nano-technologySolid State recyclingEfficient energy use
researchProduct