Search results for "Fuel Cell"

showing 10 items of 260 documents

Effect of mode of operation, substrate and final electron acceptor on single-chamber membraneless microbial fuel cell operating with a mixed community

2018

Abstract Waste minimization and circular thinking are to be achieved in order to cope with the limited amount of resources of our planet. In this perspective, bio-electrochemical systems (BESs) can contribute to the global balance with their ability to extract chemical residual energy from wastewater and transform it directly into electrical current. BESs development has been limited by the cost connected to reactor design, in which membranes and cathode catalyst constituted a major drawback. In this paper we report the optimization process of a simple reactor without membranes or precious catalyst that produced 47.1 mW m−2, which is more than what achieved with configurations including mem…

GlycerolMicrobial fuel cellMicrobial fuel cell020209 energyGeneral Chemical Engineering02 engineering and technologyElectrochemistryAnalytical ChemistryCatalysis0202 electrical engineering electronic engineering information engineeringElectrochemistryChemical Engineering (all)Process engineeringMembranelechemistry.chemical_classificationbusiness.industryNon-fermentable substrateElectron acceptorBio-electrochemical systemFermentableMembraneWastewaterchemistryElectrodebusinessCurrent densityJournal of Electroanalytical Chemistry
researchProduct

Nano composite membrane-electrode assembly formation for fuel cell-modeling aspects

2007

Long term stability is an essential requirement for fuel cell applications in automobile and stationary energy systems. In these systems the agglomeration of the catalyst nanoparticles is a well-known phenomenon which cannot be easily overcome or compensated for by re-designing the system. A direct result of this occurrence is the irreversible decrease of the electrochemical performance. Irregularities in electric field distribution are one root cause for migration and subsequent agglomeration of the catalyst nanoparticle. In this work, the impact of the electrode mechanical deformation on electric field distribution was studied using a computer modeling approach. Model of a Proton Exchange…

HistoryMaterials scienceEconomies of agglomerationMembrane electrode assemblyElectrochemical engineeringMechanical engineeringNanoparticleProton exchange membrane fuel cellDeformation (meteorology)Computer Science ApplicationsEducationElectric fieldElectrodeComposite materialJournal of Physics: Conference Series
researchProduct

Preliminary Tests On A Miniaturized Hybrid Pv-Pemfc System

2007

A regenerative hybrid PV-PEMFC low power system is a suitable solution to replace batteries and to supply small electric devices placed in remote areas with no grid connection. Such a system was designed and built including a PV array, electrolyzer, PEMFC stack (6We) and hydrogen storage tank. As well known a hybrid PV-PEMFC energy system may represent a reliable solution to the renewable energy storage problem. Hydrogen produced by such a system is a clean fuel, suitable to replace traditional fuels which contain carbon damaging the environment. The paper reports results of a preliminary, non-dynamic experimental analysis performed on the system in order to study the effects of the anode p…

Hydrogen storageElectric power systemEngineeringStack (abstract data type)business.industryHybrid systemElectrical engineeringGrid connectionProton exchange membrane fuel cellbusinessEnergy storageAutomotive engineeringAnode2007 International Conference on Clean Electrical Power
researchProduct

Hydrogen Supplied Wireless Charging System for Electric Vehicles

2020

The aim of this work is the experimental characterization of a Wireless Charging System based on IPT (Inductive Power Transfer) supplied by a PEMFC (Proton Exchange Membrane Fuel Cell) in order to verify the possibility of its installation in not electrified areas. A hydrogen-based supply system is designed and assembled with the purpose of having an EV (electrical vehicle) charging station not connected to the main power grid. An efficiency analysis of the wireless transmission system is carried out taking into account external parameters such as distance and misalignment between the transmitter coil and the receiver coil, verifying the integration potentialities of both IPT and fuel cell …

IPTHydrogenComputer sciencebusiness.industry020209 energy020208 electrical & electronic engineeringAutomotive industrychemistry.chemical_elementProton exchange membrane fuel cell02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici7. Clean energyAutomotive engineeringCharging stationchemistry0202 electrical engineering electronic engineering information engineeringWirelessMaximum power transfer theoremFuel cellsFuel CellsWireless power transferPEMFCWireless Power Transferbusiness
researchProduct

Energetic macroscopic representation and inversion based control of fuel cell in a series hybrid race vehicle system

2020

This paper studies the replacement of engine and generator as range extender in a hybrid racing car with a fuel cell system. A model of the original system of the car using range extender consisting of an internal combustion engine and electric generator has been developed respecting the action-reaction principle used by energetic macroscopic representation (EMR) and its inversion based control (IBC) to organise its subsystems interconnection according to the physical causality. Results from drive tests of the real car on racing circuit are used to validate the model. The objective of this paper is to study the parameterisation and the integration of fuel cell stack components based on this…

InterconnectionMathematical modelComputer scienceRenewable Energy Sustainability and the EnvironmentElectric generatorInversion (meteorology)Automotive engineeringlaw.invention[SPI]Engineering Sciences [physics]Fuel TechnologyInternal combustion enginelawControl systemAutomotive EngineeringFuel cellsHybrid vehicleComputingMilieux_MISCELLANEOUS
researchProduct

Development of a modular room-temperature hydride storage system for vehicular applications

2016

The subject of this paper concerns the development of a vehicular hydrogen tank system, using a commercial interstitial metal hydride as storage material. The design of the tank was intended to feed a fuel cell in a light prototype vehicle, and the chosen hydride material, Hydralloy C5 by GfE, was expected to be able to absorb and desorb hydrogen in a range of pressure suitable for this purpose. A systematic analysis of the material in laboratory scale allows an extrapolation of the thermodynamic and reaction kinetics data. The following development of the modular tank was done according to the requirements of the prototype vehicle propulsion system and led to promising intermediate results…

Interstitial metalComputer sciencePrototype vehicle02 engineering and technologyPropulsionHydrogen tankPropulsion010402 general chemistry01 natural sciencesHydrogen storageSorption proceRange (aeronautics)General Materials ScienceProcess engineeringFlexibility (engineering)Hydridebusiness.industryHydrideFuel cellVehicular applicationsReaction kineticGeneral ChemistryModular designHydrogen storage021001 nanoscience & nanotechnology0104 chemical sciencesTanks (containers)Computer data storageModular approach0210 nano-technologybusinessHeat management
researchProduct

Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated …

2007

Abstract One of challenges in improving the performance and cost-effectiveness of solid oxide fuel cells (SOFCs) is the development of suitable interconnect materials. Recent researches have enabled to decrease the operating temperature of the SOFC from 1000 to 800 °C. Chromia forming alloys are then among the best candidates for interconnects. However, low electronic conductivity and volatility of chromium oxide scale need to be solved to improve interconnect performances. In the field of high temperature oxidation of metals, it is well known that the addition of reactive element into alloys or as thin film coatings, improves their oxidation resistance at high temperature. The elements of …

Materials Chemistry2506 Metals and AlloysMaterials science020209 energyOxideEnergy Engineering and Power TechnologyMineralogychemistry.chemical_element02 engineering and technology[CHIM.INOR]Chemical Sciences/Inorganic chemistryengineering.materialCorrosionchemistry.chemical_compoundASROperating temperatureCoatingElectrochemistry0202 electrical engineering electronic engineering information engineeringSOFCElectrical and Electronic EngineeringPhysical and Theoretical ChemistryThin filmRenewable Energy Sustainability and the EnvironmentMetallurgyASR; Interconnect; MOCVD; Reactive element; SOFC; Electrochemistry; Fuel Technology; Materials Chemistry2506 Metals and Alloys; Energy (miscellaneous)[ CHIM.INOR ] Chemical Sciences/Inorganic chemistry[CHIM.MATE]Chemical Sciences/Material chemistryYttrium021001 nanoscience & nanotechnologyChromiaFuel Technologychemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryInterconnectMOCVDengineeringSolid oxide fuel cell0210 nano-technologyReactive elementEnergy (miscellaneous)Journal of Power Sources
researchProduct

Interdependence of Oxygenation and Hydration in Mixed-Conducting (Ba,Sr)FeO3-δPerovskites Studied by Density Functional Theory

2020

Financial support by the German–Israeli Foundation for Scientific Research and Development (grant I-1342-302.5/2016) and the Latvian Council of Science (grant lzp-2018/1-0147 (D.G., E.A.K.)) is gratefully acknowledged. The authors further thank Guntars Zvejnieks for help with CRYSTAL code calculations.

Materials science02 engineering and technologyElectronic structure010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesCathode0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionGeneral EnergyChemical engineering13. Climate actionlawvisual_artvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]Fuel cellsDensity functional theoryCeramicPhysical and Theoretical Chemistry0210 nano-technology
researchProduct

Metallic interconnects for solid oxide fuel cell: Effect of water vapour on oxidation resistance of differently coated alloys

2009

International audience; The need of interconnect to separate fuel and oxidant gasses and connect individual cells into electrical series in a SOFC stack appears as one of the most important point in fuel cell technology. Due to their high electrical and thermal conductivities, thermal expansion compatibility with the other cell components and lowcost, ferritic stainless steels (FSS) are nowconsidered to be among the most promising candidate materials as interconnects in SOFC stacks. Despite the formation at 800 ◦C of a protective chromia Cr2O3 scale, it can transform in volatile chromium species, leading to the lost of its protectiveness and then the degradation of the fuel cell. A previous…

Materials science020209 energyEnergy Engineering and Power TechnologyMineralogy02 engineering and technologyChemical vapor deposition[CHIM.INOR]Chemical Sciences/Inorganic chemistryengineering.materialWater vapour7. Clean energyThermal expansionCorrosionCoating0202 electrical engineering electronic engineering information engineeringSOFCMetalorganic vapour phase epitaxyElectrical and Electronic EngineeringPhysical and Theoretical ChemistryRenewable Energy Sustainability and the Environment[ CHIM.INOR ] Chemical Sciences/Inorganic chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyChromiaAnodeChemical engineering[ CHIM.MATE ] Chemical Sciences/Material chemistryInterconnectMOCVDengineeringSolid oxide fuel cell0210 nano-technologyReactive elementJournal of Power Sources
researchProduct

Interface Solid-State Reactions in La0.8Sr0.2MnO3/Ce0.8Sm0.2O2 and La0.8Sr0.2MnO3/BaCe0.9Y0.1O3 Disclosed by X-ray Microspectroscopy

2019

The stability of the electrode/electrolyte interface is a critical issue in solid-oxide cells working at high temperatures, affecting their durability. In this paper, we investigate the solid-state chemical mechanisms that occur at the interface between two electrolytes (Ce0.8Sm0.2O2, SDC, and BaCe0.9Y0.1O3, BCY) and a cathode material (La0.8Sr0.2MnO3, LSM) after prolonged thermal treatments. Following our previous work on the subject, we used X-ray microspectroscopy, a technique that probes the interface with submicrometric resolution combining microanalytical information with the chemical and structural information coming from space-resolved X-ray absorption spectroscopy. In LSM/BCY, the …

Materials scienceAbsorption spectroscopyXASXRFAnalytical chemistryEnergy Engineering and Power Technologychemistry.chemical_elementManganeseElectrolytefuel cellselectrolytecompatibilitySDCfuel cellchemistry.chemical_compoundThermalMaterials ChemistryElectrochemistryID21Chemical Engineering (miscellaneous)materials compatibilityESRFx-ray microspectroscopySOFCElectrical and Electronic Engineeringx-ray fluorescenceLanthanum strontium manganiteX-rayBCYelectrodeXANESceriaChemical statelanthanum strontium manganitechemistryElectrodeinterdiffusionbarium cerate
researchProduct