Search results for "Fuel Cell"

showing 10 items of 260 documents

Synchrotron Radiation and Chemistry: Studies of Materials for Renewable Energy Sources

2014

We present an overview of selected applications of synchrotron radiation methods to topical chemical research. The analysis is limited to the studies on materials for renewable energy sources, focussing on topics peculiar to chemical research, such as reactivity and synthesis routes; in particular, the paper takes into account subjects having some relevance for the production and storage of energy based on hydrogen. Hydrogen production and storage are taken into account in the sections concerning: (i) Dye-sensitized solar cells, (ii) Metal-organic frameworks and (iii) Hydrides for hydrogen storage; production of energy by fuel cell devices is treated in (iv) Oxide ion and proton conductors …

Materials scienceHydrogenbusiness.industrysynchrotron radiationXRDSynchrotron radiationchemistry.chemical_elementSAXSElectrochemistryXRPDEngineering physicsXANESRenewable energyCatalysishydrogen storagefuel cellHydrogen storageEXAFSchemistrydye-sensitized solar cellSR-XRDReactivity (chemistry)businessNuclear chemistryHydrogen production
researchProduct

Metallic interconnects for solid oxide fuel cell: Performance of reactive element oxide coating during long time exposure

2011

One of challenges in improving the performance and cost-effectiveness of SOFCs (solid oxide fuel cells) is the development of suitable interconnects materials. Chromia-forming alloys and especially ferritic stainless steels, like Crofer22APU, are considered to be among the most promising candidate materials as interconnects in SOFC stacks. However, the performance of chromia-forming materials can be limited by the low electronic conductivity of the oxide scale (high ASR – area specific resistance – value). Such degradation are unacceptable regarding the long-term operation (>40 000 h). A previous study 1 demonstrated that in air, the addition of a nanometric reactive element oxide (La2O3) l…

Materials scienceMechanical EngineeringMetallurgyAlloyMetals and AlloysOxideGeneral MedicineChemical vapor depositionengineering.materialSurfaces Coatings and FilmsCorrosionMetalchemistry.chemical_compoundchemistryCoatingMechanics of Materialsvisual_artMaterials Chemistryengineeringvisual_art.visual_art_mediumEnvironmental ChemistrySolid oxide fuel cellLayer (electronics)Materials and Corrosion
researchProduct

New prototypes for the isolation of the anodic chambers in microbial fuel cells

2016

This work has been focused on the assessment of new prototypes of MFC in which a more strict separation of the anode and cathode compartments is looked for, in order to attain strict anaerobic conditions in the anode chamber and hence, avoid lack of efficiency due to the prevalence of non-electrogenic competing microorganisms and to optimize composition of the anolyte and catholyte. A cylinder reactor with an inner chamber with graphite bars acting as anodes and the outer one with a stainless steel tube acting as cathode was used in three different configurations and results obtained during lifetests are compared in terms of electricity production, cathode oxygen consumption and anode COD d…

Materials scienceMicrobial fuel cellMicrobial fuel cell020209 energyGeneral Chemical EngineeringCompartimentos separadosEnergy Engineering and Power Technology02 engineering and technology010501 environmental sciencesDouble chamber01 natural sciencesCámara doblelaw.inventionIsolationlaw0202 electrical engineering electronic engineering information engineeringMiniaturizationChemical Engineering (all)GraphitePrototiposOhmic contact0105 earth and related environmental sciencesAislamientoOrganic ChemistrySeparated compartmentSettore ING-IND/27 - Chimica Industriale E TecnologicaPrototypeCathodeAnodeIngeniería QuímicaElectricity generationFuel TechnologyChemical engineeringDegradation (geology)Pila de combustible microbiana
researchProduct

Comparison of Cu-B Alloy and Stainless Steel as Electrode Material for Microbial Fuel Cell

2019

The microbial fuel cell (MFC) is a technical devices that electricity produces during wastewater treatment. One of the problems of MFCs is a low current density. Thus, it is necessary to search for new electrodes for MFC. The comparison of Cu-B alloy and stainless steel as catalyst for MFCs cathode is presented in this paper. The research included measurements of the concentration of COD, NH4+ and NO3− in three types of reactors: without aeration, with aeration and with using a MFC (with Cu-B and stainless steel cathode). It has been shown that effectiveness of MFC with Cu-B electrode is higher than effectiveness of MFC with stainless steel electrode.

Materials scienceMicrobial fuel cellbusiness.industryAlloyMetallurgyengineering.materialCathodelaw.inventionRenewable energylawElectrodeengineeringSewage treatmentAerationbusinessCurrent density
researchProduct

Centrifugal Water Pump Driven With a DC Motor Powered by an Emulator of MK5-E Proton Exchange Membrane Fuel Cell Stacks

2004

Direct Current (DC) motors can be directly powered by Proton Exchange Membrane Fuel Cell (PEMFC) Stacks, to obtain plants with little maintenance and good reliability. To obtain a suitable efficiency working plant, it’s necessary to correctly match the load in order to operate in proximity to the best power line of the FC stacks generator. Otherwise by a proper field current regulation of a separately excited DC motor directly powered by a FC stacks generator, it is possible to extract from the generator itself the correct power for every temperature level. The present interest for this problem has advised the Authors to perform an experimental investigation, whose results are reported in t…

Materials scienceNuclear engineeringProton exchange membrane fuel cellUnitized regenerative fuel cellDC motorAutomotive engineeringVolume 1
researchProduct

Oxide-based nanomaterials for fuel cell catalysis:the interplay between supported single Pt atoms and particles

2017

The concept of single atom catalysis offers maximum noble metal efficiency for the development of low-cost catalytic materials. Among possible applications are catalytic materials for proton exchange membrane fuel cells. In the present review, recent efforts towards the fabrication of single atom catalysts on nanostructured ceria and their reactivity are discussed in the prospect of their employment as anode catalysts. The remarkable performance and the durability of the ceria-based anode catalysts with ultra-low Pt loading result from the interplay between two states associated with supported atomically dispersed Pt and sub-nanometer Pt particles. The occurrence of these two states is a co…

Materials sciencePHOTOELECTRON-SPECTROSCOPYReducing agentCatalitzadorsOxideProton exchange membrane fuel cellNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesRedoxPALLADIUM NANOPARTICLESCatalysisNanomaterialsCatalysischemistry.chemical_compoundAdsorptionPiles de combustibleD-METAL ATOMSFuel cellsCatalystsCEO2(111) SURFACECO OXIDATIONIN-SITUNanostructured materialsSILICON SUBSTRATE021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringGRAPHITE FOILengineeringTHIN-FILM CATALYSTSNoble metalMaterials nanoestructuratsCERIA-BASED OXIDE0210 nano-technology
researchProduct

Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Ap…

2020

[EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PE…

Materials sciencePolymers and PlasticspolymerPopulationCarbon nanotubesMetal organic frameworksProton exchange membrane fuel cellNanotechnologyReviewfuel cellsProton exchange membranelcsh:QD241-441lcsh:Organic chemistryFast ion conductorFuel cellsPolymereducationGraphene oxidechemistry.chemical_classificationConductivityeducation.field_of_studybusiness.industryFossil fuelComposite membranesGeneral ChemistryPolymerPolybenzimidazoleIonic liquidspolybenzimidazolechemistryMAQUINAS Y MOTORES TERMICOSAlternative energyFuel cellsComposite membraneconductivitybusinesscomposite membranesproton exchange membranePolymers
researchProduct

Proton conductivity through polybenzimidazole composite membranes containing silica nanofiber mats

2019

The quest for sustainable and more efficient energy-converting devices has been the focus of researchers&prime

Materials sciencePolymers and PlasticspolymerProton exchange membrane fuel cellfuel cellssilici compostosArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistrynanofibersThermal stabilitysolucions polimèriquesComputingMilieux_MISCELLANEOUSelectrospinningchemistry.chemical_classificationGeneral ChemistryPolymerSilaneElectrospinningDielectric spectroscopypolybenzimidazoleMembraneelectrochemical impedance spectroscopychemistryChemical engineeringsilicaNanofiberproton conductivityconductivitat elèctricaproton exchange membrane
researchProduct

Diamond Films as Support for Electrochemical Systems for Energy Conversion and Storage

2019

Many efforts have been dedicated to develop and study different catalysts supported materials for energy storage and conversion. Polymer electrolyte membranes (PEM) and capacitors have been topics of special interest for the scientific community, then, the research to find excellent catalyst-supports has constantly increased. The use of conductive diamond films has been proposed due to their mechanical and chemical stability properties. In this context, the application of BDD-catalyst surfaces for PEM fuel cells as well as the production of electrochemical capacitors using BDD materials have been summarized and discussed in this chapter.

Materials scienceProton exchange membrane fuel cellDiamondContext (language use)NanotechnologyElectrolyteengineering.materialElectrochemistryEnergy storagelaw.inventionCapacitorlawengineeringEnergy transformation
researchProduct

Surface termination effects on the oxygen reduction reaction rate at fuel cell cathodes

2018

This research was partly funded by the Latvian project IMIS2 with the computer resources provided by the High Performance Computing Centre Stuttgart (HLRS) (Project DEFTD 12939). The authors thank D. Gryaznov for fruitful discussions and M. Sokolov for technical assistance. MMK is grateful to the Office of the Director of National Science Foundation for support under the Independent Research and Development program. The ndings, conclusions, and recommendations expressed in this material are those of the authors and do not necessarily reect the views of NSF and other funding agencies.

Materials scienceRenewable Energy Sustainability and the EnvironmentAnalytical chemistrychemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyRate-determining step7. Clean energy01 natural sciencesOxygenCathodeDissociation (chemistry)0104 chemical scienceslaw.inventionAdsorptionchemistryOxidation statelawVacancy defect:NATURAL SCIENCES:Physics [Research Subject Categories]Fuel cellsGeneral Materials Science0210 nano-technology
researchProduct