Search results for "Functor"
showing 10 items of 32 documents
OPERADS AND JET MODULES
2005
Let $A$ be an algebra over an operad in a cocomplete closed symmetric monoidal category. We study the category of $A$-modules. We define certain symmetric product functors of such modules generalising the tensor product of modules over commutative algebras, which we use to define the notion of a jet module. This in turn generalises the notion of a jet module over a module over a classical commutative algebra. We are able to define Atiyah classes (i.e. obstructions to the existence of connections) in this generalised context. We use certain model structures on the category of $A$-modules to study the properties of these Atiyah classes. The purpose of the paper is not to present any really de…
Birkhoff-Frink representations as functors
2010
In an earlier article we characterized, from the viewpoint of set theory, those closure operators for which the classical result of Birkhoff and Frink, stating the equivalence between algebraic closure spaces, subalgebra lattices and algebraic lattices, holds in a many-sorted setting. In the present article we investigate, from the standpoint of category theory, the form these equivalences take when the adequate morphisms of the several different species of structures implicated in them are also taken into account. Specifically, our main aim is to provide a functorial rendering of the Birkhoff-Frink representation theorems for both single-sorted algebras and many-sorted algebras, by definin…
Fibred Categories and the Six Functors Formalism
2019
In Section 1, we introduce the basic language used in this book, the so-called premotivic categories and their functoriality. This is an extension of the classical notion of fibered categories. They appear with different categorical structures. In Section2, the language of premotivic categories is specialized to that of triangulated categories and to algebraic geometry. We introduce several axioms of such categories which ultimately will lead to the full six functors formalism. An emphasis is given on the study of the main axioms, with a special care about the so-called localization axiom. Then in Section 3, the general theory of descent is formulated in the language of premotivic model cat…
On ordered categories as a framework for fuzzification of algebraic and topological structures
2009
Using the framework of ordered categories, the paper considers a generalization of the fuzzification machinery of algebraic structures introduced by Rosenfeld as well as provides a new approach to fuzzification of topological structures, which amounts to fuzzifying the underlying ''set'' of a structure in a suitably compatible way, leaving the structure itself crisp. The latter machinery allows the so-called ''double fuzzification'', i.e., a fuzzification of something that is already fuzzified.
Wellfounded Trees and Dependent Polynomial Functors
2004
We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by in- vestigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed cat- egories.
Hypergraph functor and attachment
2010
Using an arbitrary variety of algebras, the paper introduces a fuzzified version of the notion of attachment in a complete lattice of Guido, to provide a common framework for the concept of hypergraph functor considered by different authors in the literature. The new notion also gives rise to a category of variable-basis topological spaces which is a proper supercategory of the respective category of Rodabaugh.
Butterflies in a Semi-Abelian Context
2011
It is known that monoidal functors between internal groupoids in the category Grp of groups constitute the bicategory of fractions of the 2-category Grpd(Grp) of internal groupoids, internal functors and internal natural transformations in Grp, with respect to weak equivalences (that is, internal functors which are internally fully faithful and essentially surjective on objects). Monoidal functors can be equivalently described by a kind of weak morphisms introduced by B. Noohi under the name of butterflies. In order to internalize monoidal functors in a wide context, we introduce the notion of internal butterflies between internal crossed modules in a semi-abelian category C, and we show th…
The cartesian closed bicategory of generalised species of structures
2007
AbstractThe concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised analytic functors, is also put forward. These definitions encompass most notions of combinatorial species considered in the literature — including of course Joyal's original notion — together with their associated substitution operation. Our first main result exhibits the substitution calculus of generalised species as arising from a Kleisli bicategory for a pseudo-comonad on profunctors. Our secon…
Weights and Pure Nori Motives
2017
In this chapter, we explain how Nori motives relate to other categories of motives. By the work of Harrer, the realisation functor from geometric motives to absolute Hodge motives factors via Nori motives. We then use this in order to establish the existence of a weight filtration on Nori motives with rational coefficients. The category of pure Nori motives turns out to be equivalent to Andre’s category of motives via motivated cycles.
On operads, bimodules and analytic functors
2017
We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.