Search results for "Fuzzy logi"
showing 10 items of 471 documents
On a Category of Extensional Fuzzy Rough Approximation L-valued Spaces
2016
We establish extensionality of some upper and lower fuzzy rough approximation operators on an L-valued set. Taking as the ground basic properties of these operators, we introduce the concept of an (extensional) fuzzy rough approximation L-valued space. We apply fuzzy functions satisfying certain continuity-type conditions, as morphisms between such spaces, and in the result obtain a category \(\mathcal{FRA}{} \mathbf{SPA}(L)\) of fuzzy rough approximation L-valued spaces. An interpretation of fuzzy rough approximation L-valued spaces as L-fuzzy (di)topological spaces is presented and applied for constructing examples in category \(\mathcal{FRA}{} \mathbf{SPA}(L)\).
Common fixed points for discontinuous mappings in fuzzy metric spaces
2008
In this paper we prove some common fixed point theorems for fuzzy contraction respect to a mapping, which satisfies a condition of weak compatibility. We deduce also fixed point results for fuzzy contractive mappings in the sense of Gregori and Sapena.
L -valued bornologies on powersets
2016
In M. Abel and A. ostak (2011) [1], the concept of an L-fuzzy bornology was introduced. Actually, an L-fuzzy bornology on a set X is a certain ideal in the family LX of L-fuzzy subsets of a set X. Here we propose an alternative approach to fuzzification of the concept of bornology. We define an L-valued bornology on a set X as an L-fuzzy subset B of the powerset 2X satisfying L-valued analogues of the axioms of a bornology. Basic properties of L-valued bornological spaces are studied. Our special interest concerns L-valued bornologies induced by fuzzy metrics and relative compactness-type L-valued bornologies in ChangGoguen L-topological spaces.
JH-Operators and Occasionally Weakly g-Biased Pairs in Fuzzy Symmetric Spaces
2013
We introduce the notions of $\mathcal{JH}$-operators and occasionally weakly $g$-biased mappings in fuzzy symmetric spaces to prove common fixed point theorems for self-mappings satisfying a generalized mixed contractive condition. We also prove analogous results for two pairs of $\mathcal{JH}$-operators by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement many results existing in the recent literature. We give also an application of our results to product spaces.
Quantum Finite Automata and Logics
2006
The connection between measure once quantum finite automata (MO-QFA) and logic is studied in this paper. The language class recognized by MO-QFA is compared to languages described by the first order logics and modular logics. And the equivalence between languages accepted by MO-QFA and languages described by formulas using Lindstrom quantifier is shown.
Extremal problems of approximation theory in fuzzy context
1999
Abstract The problem of approximation of a fuzzy subset of a normed space is considered. We study the error of approximation, which in this case is characterized by an L -fuzzy number. In order to do this we define the supremum of an L -fuzzy set of real numbers as well as the supremum and the infimum of a crisp set of L -fuzzy numbers. The introduced concepts allow us to investigate the best approximation and the optimal linear approximation. In particular, we consider approximation of a fuzzy subset in the space L p m of differentiable functions in the L q -metric. We prove the fuzzy counterparts of duality theorems, which in crisp case allows effectively to solve extremal problems of the…
Conditioning for Boolean Subsets, Indicator Functions and Fuzzy Subsets
2016
This chapter deals with measure-free conditioning. It starts with the mean value based definition of conditional fuzzy subsets which again gives a fuzzy subset. Applying this general construction to indicator functions, it is proved that these conditionals form an MV-algebra and that this is isomorphic to the already known MV-algebra of the interval based conditional Boolean subsets. In the following, the problem of iteration is completely solved with the result that there are exactly two types of iteration, called the blurred resp. the sharper one, which remain in the corresponding MV-algebras. Moreover, the general concept of conditional operators plays a significant role. Finally, the pr…
On another approach to the definition of an L-fuzzy valued integral
2011
We continue to develop a construction of an L-fuzzy valued measure extending a crisp measure defined on a σ-algebra of crisp sets to an L-fuzzy valued measure defined on a T M -tribe. We describe two equivalent approaches to define an L-fuzzy valued integral of non-negative measurable functions.
Upper and lower general aggregation operators based on a strong fuzzy metric
2018
L-fuzzy syntopogenous structures, Part I: Fundamentals and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities
2013
Abstract We introduce the concept of an L-fuzzy syntopogenous structure where L is a complete lattice endowed with an implicator ↦ : L × L → L satisfying certain properties (in particular, as L one can take an MV-algebra). As special cases our L-fuzzy syntopogenous structures contain classical Csaszar syntopogenous structures, Katsaras–Petalas fuzzy syntopogenous structures as well as fuzzy syntopogeneous structures introduced in the previous work of the second named author (A. Sostak, Fuzzy syntopogenous structures, Quaest. Math. 20 (1997) 431–461). Basic properties of the category of L-fuzzy syntopogenous spaces are studied; categories of L-fuzzy topological spaces, L-fuzzy proximity spac…