Search results for "G proteins"

showing 2 items of 992 documents

Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging

2018

International audience; Nowadays, monitoring of volatile organic compounds (VOCs) is very important in various domains. In this work, we aimed to develop sensitive olfactory biosensors using odorant binding proteins (OBPs) as sensing materials. Three rat OBP3 derivatives with customized binding properties were designed and immobilized on the same chip for the detection of VOCs in solution by surface plasmon resonance imaging (SPRi). We demonstrated that the proteins kept their binding properties after the immobilization under optimized conditions. The obtained olfactory biosensors exhibited very low limits of detection in both concentration (200pM of beta-ionone) and in molecular weight of …

volatile organic compoundConformational change[SDV.BIO]Life Sciences [q-bio]/BiotechnologyOdorant bindingBiomedical EngineeringBiophysicsBiosensing Techniques02 engineering and technologyReceptors Odorant01 natural sciencesHexanal[SPI]Engineering Sciences [physics]chemistry.chemical_compoundElectrochemistryAnimalsVolatile organic compoundComputingMilieux_MISCELLANEOUSDetection limitchemistry.chemical_classificationVolatile Organic CompoundsChromatographyChemistry010401 analytical chemistryGeneral MedicineRepeatabilitySurface Plasmon Resonance021001 nanoscience & nanotechnologyRats0104 chemical sciencesSmellsurface plasmon resonance imagingofactory biosensor0210 nano-technologySelectivityBiosensorodorant binding proteinsBiotechnologyBiosensors and Bioelectronics
researchProduct

Conservation of the positions of metazoan introns from sponges to humans

2002

Abstract Sponges (phylum Porifera) are the phylogenetic oldest Metazoa still extant. They can be considered as reference animals (Urmetazoa) for the understanding of the evolutionary processes resulting in the creation of Metazoa in general and also for the metazoan gene organization in particular. In the marine sponge Suberites domuncula , genes encoding p38 and JNK kinases contain nine and twelve introns, respectively. Eight introns in both genes share the same positions and the identical phases. One p38 intron slipped for six bases and the JNK gene has three more introns. However, the sequences of the introns are not conserved and the introns in JNK gene are generally much longer. Intron…

xMolecular Sequence Datap38 Mitogen-Activated Protein KinasesExonGene duplicationGeneticsAnimalsHumansCoding regionGroup I catalytic intronAmino Acid SequenceGeneConserved SequencePhylogenyCaenorhabditis elegansGeneticsBase SequenceSequence Homology Amino AcidbiologyCalcium-Binding ProteinsMicrofilament ProteinsJNK Mitogen-Activated Protein KinasesIntronDNASequence Analysis DNAGeneral MedicineGroup II intronbiology.organism_classificationIntronsPoriferaDNA-Binding ProteinsMitogen-Activated Protein KinasesSequence AlignmentGene
researchProduct