Search results for "GABAergic neuron"
showing 10 items of 24 documents
Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus
2013
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron-type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA-CB1-KO mice) or cortical glutamatergic neurons (Glu-CB1-KO mice). Compared to their wild-type littermates, Glu-CB1-KO displayed a small decrease of CB1 mRNA amount, immunoreactivity…
Circuit Specific Functions of Cannabinoid CB1 Receptor in the Balance of Investigatory Drive and Exploration
2011
Well balanced novelty seeking and exploration are fundamental behaviours for survival and are found to be dysfunctional in several psychiatric disorders. Recent studies suggest that the endocannabinoid (eCB) system is an important control system for investigatory drive. Pharmacological treatment of rodents with cannabinergic drugs results in altered social and object investigation. Interestingly, contradictory results have been obtained, depending on the treatment, drug concentration and experimental conditions. The cannabinoid type 1 (CB1) receptor, a central component of the eCB system, is predominantly found at the synapses of two opposing neuronal populations, i.e. on inhibitory GABAerg…
Cell type‐specific genetic reconstitution of CB1 receptor subsets to assess their role in exploratory behaviour, sociability, and memory
2021
Several studies support the notion that exploratory behaviour depends on the functionality of the cannabinoid type 1 (CB1) receptor in a cell type-specific manner. Mice lacking the CB1 receptor in forebrain GABAergic or dorsal telencephalic glutamatergic neurons have served as essential tools revealing the necessary CB1 receptor functions in these two neuronal populations. However, whether these specific CB1 receptor populations are also sufficient within the endocannabinoid system for wild-type-like exploratory behaviour has remained unknown. To evaluate cell-type-specific sufficiency of CB1 receptor signalling exclusively in dorsal telencephalic glutamatergic neurons (Glu-CB1-RS) or in fo…
Nrg1 haploinsufficiency alters inhibitory cortical circuits
2021
Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral d…
Transporter-mediated replacement of extracellular glutamate for GABA in the developing murine neocortex
2013
During early development, cortical neurons migrate from their places of origin to their final destinations where they differentiate and establish synaptic connections. During corticogenesis, radially migrating cells move from deeper zone to the marginal zone, but they do not invade the latter. This "stop" function of the marginal zone is mediated by a number of factors, including glutamate and γ-aminobutyric acid (GABA), two main neurotransmitters in the central nervous system. In the marginal zone, GABA has been shown to be released via GABA transporters (GAT)-2/3, whereas glutamate transporters (EAATs) operate in the uptake mode. In this study, GABAergic postsynaptic currents (GPSCs) were…
Lack of APP and APLP2 in GABAergic Forebrain Neurons Impairs Synaptic Plasticity and Cognition.
2020
AbstractAmyloid-β precursor protein (APP) is central to the pathogenesis of Alzheimer’s disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits i…
The Endocannabinoid System as a Therapeutic Target in Epilepsy
2008
Memory-enhancing and brain protein expression-stimulating effects of novel calcium antagonist in Alzheimer’s disease transgenic female mice
2016
The prevalence of Alzheimer's disease (AD) is higher in females than in males, and causes more severe cognitive, memory and behavioral impairments. Previously, in male transgenic (Tg) APPSweDI mice, we reported that the novel lipophilic 1,4-dihydropyridine (DHP) derivative AP-12 crossed the blood-brain barrier, blocked neuronal and vascular calcium channels, changed brain protein expression and improved behavior. In this study, we used female Tg APPSweDI mice to assess the effects of AP-12 on behavior, and brain protein expression, with a particular focus on those of the GABAergic system. The results showed that in female Tg mice, similar to male Tg mice, AP-12 improved spatial learning/mem…
Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain.
2014
Póster presentado en el IX Simposi de Neurobiologia Experimental, celebrado los días 22 y 23 de octubre de 2014 en Barcelona y organizado por la Societat Catalana de Biologia del Institut d'Estudis Catalans
A restricted population of CB1 cannabinoid receptors with neuroprotective activity.
2014
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain b…