Search results for "GAMMA-RAY BURST"

showing 10 items of 132 documents

Four Years of Real-Time GRB Followup by BOOTES-1B (2005–2008)

2010

Four years of BOOTES-1B GRB follow-up history are summarised for the first time in the form of a table. The successfully followed events are described case by case. Further, the data are used to show the GRB trigger rate in Spain on a per-year basis, resulting in an estimate of 18 triggers and about 51 hours of telescope time per year for real-time triggers. These numbers grow to about 22 triggers and 77 hours per year if we include also the GRBs observable within 2 hours after the trigger. Copyright © 2010 Martin Jelínek et al.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsArticle SubjectTrigger ratelcsh:AstronomyFOS: Physical sciencesAstronomyAstronomy and AstrophysicsBOOTESTable (information)law.inventionTelescopelcsh:QB1-991Space and Planetary SciencelawAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsGamma-ray burstInstrumentation and Methods for Astrophysics (astro-ph.IM)Advances in Astronomy
researchProduct

Numerical models of blackbody-dominated gamma-ray bursts – I. Hydrodynamics and the origin of the thermal emission

2014

GRB 101225A is a prototype of the class of blackbody-dominated (BBD) gamma-ray bursts (GRBs). It has been suggested that BBD-GRBs result from the merger of a binary system formed by a neutron star and the helium core of an evolved star. We have modelled the propagation of ultrarelativistic jets through the environment left behind the merger by means of relativistic hydrodynamic simulations. In this paper, the output of our numerical models is post-processed to obtain the (thermal) radiative signature of the resulting outflow. We outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of GRB 101225A…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curve01 natural sciencesAfterglowNeutron starCommon envelopeSpace and Planetary ScienceThermal radiation0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Magnetorotational core collapse of possible GRB progenitors – I. Explosion mechanisms

2019

We investigate the explosion of stars with zero-age main-sequence masses between 20 and 35 solar masses and varying degrees of rotation and magnetic fields including ones commonly considered progenitors of gamma-ray bursts (GRBs). The simulations, combining special relativistic magnetohydrodynamics, a general relativistic approximate gravitational potential, and two-moment neutrino transport, demonstrate the viability of different scenarios for the post-bounce evolution. Having formed a highly massive proto-neutron star (PNS), several models launch successful explosions, either by the standard supernova mechanism based on neutrino heating and hydrodynamic instabilities or by magnetorotation…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSolar massAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRam pressureBlack holeSupernovaGravitational potentialSpace and Planetary ScienceNeutrinoMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstMonthly Notices of the Royal Astronomical Society
researchProduct

A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts

2012

The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ~ 100 s, but cannot respond faster than ~ 60 s. While some ground-based telescopes respond quickly, the number of sub-60 s detections remains small. In mid- to late-2013, the Ultra-Fast Flash Observatory-Pathfinder is to be launched on the Lomonosov spacecraft to investigate early optical GRB emission. This pathfinder mission is necessarily limited in sensitivity and event rate; here we discuss a next generation rapid-response space observatory. We list science topics motivating our instruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times, meas…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSpacecraftbusiness.industryApertureAstrophysics::High Energy Astrophysical PhenomenaExtinction (astronomy)Astrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsOrbital mechanicslaw.inventionTelescopeFlash (photography)ObservatorylawbusinessGamma-ray burstAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

Gravitational Waves from the Papaloizou-Pringle Instability in Black-Hole-Torus Systems

2011

Black hole (BH)--torus systems are promising candidates for the central engine of gamma-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an $m=1$ nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a timescale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observa…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeCosmology and Nongalactic Astrophysics (astro-ph.CO)Gravitational waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyAstronomyTorusGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsInstabilityGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyNumerical relativityStarsAstrophysics - Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Highlights from the ARGO-YBJ Experiment

2012

""The ARGO-YBJ experiment at YangBaJing in Tibet (4300m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton\\\/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton-air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined.""

HistoryAstronomyFluxAstrophysicsProton flux01 natural sciencesArgo-YbjGamma-ray emissionSettore FIS/05 - Astronomia E AstrofisicaCosmic-ray physicsResistive Plate ChambersInstrumentation010303 astronomy & astrophysicsArgoPhysicsRange (particle radiation)DetectorSettore FIS/01 - Fisica SperimentaleCrab nebulaAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayCrab nebula Extensive air showers Flux ratio Gamma-ray astronomy Gamma-ray emission Ground based Resistive plate chambers; Astronomy Cosmic rays Cosmology Experiments; Gamma raysFlux ratioCosmologyComputer Science ApplicationsResistive plate chambersNuclear and High Energy PhysicsX- and γ-ray instrumentGround-based gamma-ray astronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsCosmic RayEducationResistive Plate Chambers Extensive air showers Ground-based g ray astronomy Cosmic-ray physicsGround-based γ-ray astronomy0103 physical sciencesExtensive air showersCosmic raysExtensive air showers X- and γ-ray instruments Pulsars. Quasars active or peculiar galaxies objects and systemsAstrophysics::Galaxy AstrophysicsGamma-ray astronomy010308 nuclear & particles physicsGamma raysAstronomyResistive Plate ChamberGround basedCrab NebulaAntiprotonResistive Plate Chambers; Extensive air showers; Ground-based γ-ray astronomy; Cosmic-ray physicsSatelliteGamma-ray burstExperimentsJournal of Physics: Conference Series
researchProduct

The THESEUS space mission concept: science case, design and expected performances

2018

THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing …

IonizationAtmospheric Sciencecosmological modelCherenkov Telescope Array[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyDark ageMASSIVE SINGLE STARSStar formation rates Gamma ray01 natural sciencesCosmology: observationlocalizationlaw.inventionAstrophysicEinstein Telescopeobservational cosmologylawObservational cosmologyRe-ionizationCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionizationLIGOobservations [Cosmology]Telescope010303 astronomy & astrophysicsHigh sensitivityHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMulti-wavelengthenergy: highsezelegamma-ray burstsCosmology: observationsCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionization; Aerospace Engineering; Space and Planetary ScienceAstrophysics::Instrumentation and Methods for Astrophysicsimagingstar: formationburst [Gamma-ray]observatoryGeophysicsDark agesX rays Cosmology: observationAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenasignatureStarTIDAL DISRUPTIONGamma-ray: burstAstrophysics::High Energy Astrophysical PhenomenaSIMILAR-TO 6Socio-culturaleFOS: Physical sciencesAerospace EngineeringGamma-ray: burstsobservation [Cosmology]galaxy: luminosityX-ray astronomy: instrumentation7 CANDIDATE GALAXIESAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burst114 Physical sciencesSettore FIS/03 - Fisica della MateriaTelescopeX-raybursts [Gamma-ray]FIS/05 - ASTRONOMIA E ASTROFISICASettore FIS/05 - Astronomia e AstrofisicaFirst star0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]KAGRAInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsFirst starsLIGHT CURVESEinstein Telescope010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and Astrophysics115 Astronomy Space scienceCherenkov Telescope ArrayredshiftsensitivityRedshiftNEUTRON-STAR MERGERmessengerVIRGOelectromagneticLUMINOSITY FUNCTIONSpace and Planetary ScienceBLACK-HOLEGeneral Earth and Planetary SciencesGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

2015

Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\,\mathrm{TeV}$ to the $\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years o…

J.2Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScale (descriptive set theory)AstrophysicsIceCubelaw.inventionTelescopelawPoint (geometry)Anisotropyastro-ph.HE2pt-correlationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh Energy Physics::Phenomenology2pt-correlation; Astrophysical neutrinos; Extraterrestrial neutrinos; IceCube; Multipole analysis; Point sourcesAstrophysics::Instrumentation and Methods for AstrophysicsPoint sourcesAstronomyAstronomy and AstrophysicsMultipole analysis3. Good health85-05Astrophysical neutrinosddc:540Extraterrestrial neutrinosHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaMultipole expansionGamma-ray burstAstroparticle Physics
researchProduct

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

2014

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

MECHANISMPhysics and Astronomy (miscellaneous)AstrophysicsFOLLOW-UP OBSERVATIONSASTROPHYSICAL SOURCESIceCubeneutrinoDetection of gravitational waveGravitational waves neutrinoObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCLIGO Scientific CollaborationQBPhysicsGAMMA-RAY BURSTS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYNuclear and High Energy Physics; Physics and Astronomy (miscellaneous)NEUTRINOSNeutrino detectorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNeutrinoSENSITIVITYGIANT FLARENuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]95.85.RyMUON NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATIONGravitational wavesGeneral Relativity and Quantum CosmologyINSTABILITIESSettore FIS/05 - Astronomia e AstrofisicaCORE-COLLAPSE SUPERNOVAE[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530SDG 7 - Affordable and Clean EnergyCORE-COLLAPSEDETECTOR/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyGravitational wave95.85.SzMAGNETIZED NEUTRON-STARS[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyTRANSIENTS95.85.Sz; 95.85.RyRELATIVISTIC STARSLIGOPhysics and Astronomy[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma-ray burstEMISSIONEnergy (signal processing)
researchProduct

Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution

2008

(Abridged) We aim to quantitatively understand the dynamical effect and observational signatures of magnetization of the GRB ejecta on the onset of the afterglow. We perform ultrahigh-resolution one-dimensional relativistic MHD simulations of the interaction of a radially expanding, magnetized ejecta with the interstellar medium. The need of ultrahigh numerical resolution derives from the extreme jump conditions in the region of interaction between the ejecta and the circumburst medium. We study the evolution of an ultrarelativistic shell all the way to a the self-similar asymptotic phase. Our simulations show that the complete evolution can be characterized in terms of two parameters, name…

Magnetohydrodynamics (MHD)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAShock wavesMagnetizationsymbols.namesakeGamma rays : bursts; Methods : numerical; Magnetohydrodynamics (MHD); Shock wavesUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasEjectaAstrophysics::Galaxy AstrophysicsPhysicsnumerical [Methods]Magnetic energyAstrophysics (astro-ph)Astronomy and AstrophysicsAfterglowInterstellar mediumLorentz factorbursts [Gamma rays]Space and Planetary SciencesymbolsMagnetohydrodynamicsGamma-ray burst:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]
researchProduct