Search results for "GEOM"
showing 10 items of 6506 documents
The impact of visual working memory capacity on the filtering efficiency of emotional face distractors.
2018
Emotional faces can serve as distractors for visual working memory (VWM) tasks. An event-related potential called contralateral delay activity (CDA) can measure the filtering efficiency of face distractors. Previous studies have investigated the influence of VWM capacity on filtering efficiency of simple neutral distractors but not of face distractors. We measured the CDA indicative of emotional face filtering during a VWM task related to facial identity. VWM capacity was measured in a separate colour change detection task, and participants were divided to high- and low-capacity groups. The high-capacity group was able to filter out distractors similarly irrespective of its facial emotion. …
Dual attachment pairs in categorically-algebraic topology
2011
[EN] The paper is a continuation of our study on developing a new approach to (lattice-valued) topological structures, which relies on category theory and universal algebra, and which is called categorically-algebraic (catalg) topology. The new framework is used to build a topological setting, based in a catalg extension of the set-theoretic membership relation "e" called dual attachment, thereby dualizing the notion of attachment introduced by the authors earlier. Following the recent interest of the fuzzy community in topological systems of S. Vickers, we clarify completely relationships between these structures and (dual) attachment, showing that unlike the former, the latter have no inh…
Two-dimensional Banach spaces with polynomial numerical index zero
2009
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces
2012
Abstract Common fixed point results are obtained in 0-complete partial metric spaces under various contractive conditions, including g-quasicontractions and mappings with a contractive iterate. In this way, several results obtained recently are generalized. Examples are provided when these results can be applied and neither corresponding metric results nor the results with the standard completeness assumption of the underlying partial metric space can. MSC:47H10, 54H25.
Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups
2020
This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that…
L∞-variational problems associated to measurable Finsler structures
2016
Abstract We study L ∞ -variational problems associated to measurable Finsler structures in Euclidean spaces. We obtain existence and uniqueness results for the absolute minimizers.
The uniform convergence of a double sequence of functions at a point and Korovkin-type approximation theorems
2020
Abstract In this paper, we introduce an interesting kind of convergence for a double sequence called the uniform convergence at a point. We give an example and demonstrate a Korovkin-type approximation theorem for a double sequence of functions using the uniform convergence at a point. Then we show that our result is stronger than the Korovkin theorem given by Volkov and present several graphs. Finally, in the last section, we compute the rate of convergence.
p −1-Linear Maps in Algebra and Geometry
2012
At least since Habousch’s proof of Kempf’s vanishing theorem, Frobenius splitting techniques have played a crucial role in geometric representation theory and algebraic geometry over a field of positive characteristic. In this article we survey some recent developments which grew out of the confluence of Frobenius splitting techniques and tight closure theory and which provide a framework for higher dimension geometry in positive characteristic. We focus on local properties, i.e. singularities, test ideals, and local cohomology on the one hand and global geometric applicatioms to vanishing theorems and lifting of sections on the other.
Filament sets and decompositions of homogeneous continua
2007
Abstract This paper applies the concepts introduced in the article: Filament sets and homogeneous continua [J.R. Prajs, K. Whittington, Filament sets and homogeneous continua, Topology Appl. 154 (8) (2007) 1581–1591, doi:10.1016/j.topol.2006.12.005 ] to decompositions of homogeneous continua. Several new or strengthened results on aposyndesis are given. Newly defined decompositions are discussed. A proposed classification scheme for homogeneous continua is shown to be mostly invariant under Jones' aposyndetic decomposition.
Vertical versus horizontal Sobolev spaces
2020
Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…