6533b85afe1ef96bd12ba096

RESEARCH PRODUCT

Vertical versus horizontal Sobolev spaces

Tuomas OrponenKatrin Fässler

subject

010102 general mathematicsMetric Geometry (math.MG)Function (mathematics)Lipschitz continuity01 natural sciencesFunctional Analysis (math.FA)Fractional calculusSobolev spaceCombinatoricsMathematics - Functional AnalysisMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesVertical directionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupOrder (group theory)010307 mathematical physics0101 mathematics46E35 (Primary) 26A33 35R03 43A15 (Secondary)AnalysisMathematics

description

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev space $V^{p}_{\alpha}(\mathbb{H}^{n})$. Our search for the sharper result was motivated by the following two applications. First, combined with a short additional argument, it implies that bounded Lipschitz functions on $\mathbb{H}^{n}$ have a $\tfrac{1}{2}$-order vertical derivative in $\mathrm{BMO}(\mathbb{H}^{n})$. Second, it yields a fractional order generalisation of the (non-endpoint) vertical versus horizontal Poincar\'e inequalities of V. Lafforgue and A. Naor.

http://arxiv.org/abs/1905.13630