0000000000020429

AUTHOR

Tuomas Orponen

showing 15 related works from this author

Singular integrals on regular curves in the Heisenberg group

2019

Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …

Applied MathematicsGeneral Mathematics42B20 (primary) 43A80 28A75 35R03 (secondary)Metric Geometry (math.MG)Singular integralLipschitz continuityuniform rectifiabilityHeisenberg groupFunctional Analysis (math.FA)ConvolutionBounded operatorMathematics - Functional AnalysisCombinatoricsMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupsingular integralsBoundary value problemKernel (category theory)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Riesz transform and vertical oscillation in the Heisenberg group

2023

We study the $L^{2}$-boundedness of the $3$-dimensional (Heisenberg) Riesz transform on intrinsic Lipschitz graphs in the first Heisenberg group $\mathbb{H}$. Inspired by the notion of vertical perimeter, recently defined and studied by Lafforgue, Naor, and Young, we first introduce new scale and translation invariant coefficients $\operatorname{osc}_{\Omega}(B(q,r))$. These coefficients quantify the vertical oscillation of a domain $\Omega \subset \mathbb{H}$ around a point $q \in \partial \Omega$, at scale $r > 0$. We then proceed to show that if $\Omega$ is a domain bounded by an intrinsic Lipschitz graph $\Gamma$, and $$\int_{0}^{\infty} \operatorname{osc}_{\Omega}(B(q,r)) \, \frac{dr}{…

Riesz transformNumerical Analysisintrinsic Lipschitz graphsApplied MathematicsHeisenberg groupFunctional Analysis (math.FA)Mathematics - Functional Analysis42B20 (Primary) 31C05 35R03 32U30 28A78 (Secondary)Mathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometrysingular integralsAnalysis
researchProduct

Additive properties of fractal sets on the parabola

2023

Let $0 \leq s \leq 1$, and let $\mathbb{P} := \{(t,t^{2}) \in \mathbb{R}^{2} : t \in [-1,1]\}$. If $K \subset \mathbb{P}$ is a closed set with $\dim_{\mathrm{H}} K = s$, it is not hard to see that $\dim_{\mathrm{H}} (K + K) \geq 2s$. The main corollary of the paper states that if $0 0$. This information is deduced from an $L^{6}$ bound for the Fourier transforms of Frostman measures on $\mathbb{P}$. If $0 0$, then there exists $\epsilon = \epsilon(s) > 0$ such that $$ \|\hat{\mu}\|_{L^{6}(B(R))}^{6} \leq R^{2 - (2s + \epsilon)} $$ for all sufficiently large $R \geq 1$. The proof is based on a reduction to a $\delta$-discretised point-circle incidence problem, and eventually to the $(s,2s)$-…

Mathematics - Classical Analysis and ODEsGeneral MathematicsFurstenberg setsClassical Analysis and ODEs (math.CA)FOS: MathematicsFourier'n sarjatadditive energiesMathematics - Combinatorics28A80 11B30Combinatorics (math.CO)ArticlesFourier transformsFrostman measuresAnnales Fennici Mathematici
researchProduct

Combinatorial proofs of two theorems of Lutz and Stull

2021

Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One of the theorems states that if $K \subset \mathbb{R}^{n}$ is any set with equal Hausdorff and packing dimensions, then $$ \dim_{\mathrm{H}} π_{e}(K) = \min\{\dim_{\mathrm{H}} K,1\} $$ for almost every $e \in S^{n - 1}$. Here $π_{e}$ stands for orthogonal projection to $\mathrm{span}(e)$. The primary purpose of this paper is to present proofs for Lutz and Stull's projection theorems which do not refer to information theoretic concepts. Instead, they will rely on combinatori…

FOS: Computer and information sciences28A80 (primary) 28A78 (secondary)General MathematicskombinatoriikkaCombinatorial proofComputational Complexity (cs.CC)01 natural sciencesCombinatoricsMathematics - Metric GeometryHausdorff and packing measures0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsAlgorithmic information theoryLemma (mathematics)Euclidean spacePigeonhole principle010102 general mathematicsOrthographic projectionHausdorff spaceMetric Geometry (math.MG)Projection (relational algebra)Computer Science - Computational ComplexityMathematics - Classical Analysis and ODEsfraktaalit010307 mathematical physicsmittateoria
researchProduct

Intrinsic Lipschitz Graphs and Vertical β-Numbers in the Heisenberg Group

2016

The purpose of this paper is to introduce and study some basic concepts of quantitative rectifiability in the first Heisenberg group $\mathbb{H}$. In particular, we aim to demonstrate that new phenomena arise compared to the Euclidean theory, founded by G. David and S. Semmes in the 90's. The theory in $\mathbb{H}$ has an apparent connection to certain nonlinear PDEs, which do not play a role with similar questions in $\mathbb{R}^{3}$. Our main object of study are the intrinsic Lipschitz graphs in $\mathbb{H}$, introduced by B. Franchi, R. Serapioni and F. Serra Cassano in 2006. We claim that these $3$-dimensional sets in $\mathbb{H}$, if any, deserve to be called quantitatively $3$-rectifi…

osittaisdifferentiaaliyhtälöt28A75 (Primary) 28C10 35R03 (Secondary)SETSGeneral Mathematics010102 general mathematics16. Peace & justiceLipschitz continuity01 natural sciencesTravelling salesman problemCombinatoricsMathematics - Metric GeometryMathematics - Classical Analysis and ODEsTRAVELING SALESMAN PROBLEM0103 physical sciences111 MathematicsHeisenberg groupMathematics::Metric Geometrymittateoria010307 mathematical physicsRECTIFIABILITY0101 mathematicsMathematicsAmerican Journal of Mathematics
researchProduct

Dorronsoro's theorem in Heisenberg groups

2020

A theorem of Dorronsoro from the 1980s quantifies the fact that real-valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical vs. horizontal Poincare inequalities for real-valued functions on the Heisenberg group, originally due to Austin-Naor-Tessera and Lafforgue-Naor.

Pure mathematicsGeneral Mathematics010102 general mathematicsMathematical proof01 natural sciencesSobolev spacesymbols.namesakeEuclidean geometryPoincaré conjectureHeisenberg groupsymbolsAlmost everywhereAffine transformation0101 mathematicsVariable (mathematics)MathematicsBulletin of the London Mathematical Society
researchProduct

Plenty of big projections imply big pieces of Lipschitz graphs

2020

I prove that a closed $n$-regular set $E \subset \mathbb{R}^{d}$ with plenty of big projections has big pieces of Lipschitz graphs. This answers a question of David and Semmes.

General Mathematics010102 general mathematicsprojectionMetric Geometry (math.MG)Lipschitz continuity01 natural sciencesprojektiomatemaattinen analyysiCombinatorics28A75 (Primary) 28A78 (Secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometrymittateoria010307 mathematical physics0101 mathematicsMathematicsInventiones mathematicae
researchProduct

Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group

2018

A Semmes surface in the Heisenberg group is a closed set $S$ that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball $B(x,r)$ with $x \in S$ and $0 < r < \operatorname{diam} S$ contains two balls with radii comparable to $r$ which are contained in different connected components of the complement of $S$. Analogous sets in Euclidean spaces were introduced by Semmes in the late $80$'s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our result applies to the boundary of chord-arc domains and of redu…

Closed setApplied MathematicsGeneral Mathematics010102 general mathematicsBoundary (topology)Metric Geometry (math.MG)CodimensionLipschitz continuitySurface (topology)01 natural sciencesCombinatorics28A75 (Primary) 28A78 (Secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric Geometrymittateoria[MATH]Mathematics [math]0101 mathematicsIsoperimetric inequalityComputingMilieux_MISCELLANEOUSMathematicsComplement (set theory)Transactions of the American Mathematical Society
researchProduct

Metric Rectifiability of ℍ-regular Surfaces with Hölder Continuous Horizontal Normal

2021

Abstract Two definitions for the rectifiability of hypersurfaces in Heisenberg groups $\mathbb{H}^n$ have been proposed: one based on ${\mathbb{H}}$-regular surfaces and the other on Lipschitz images of subsets of codimension-$1$ vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole–Pauls, Bigolin–Vittone, and Antonelli–Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of ${\mathbb{H}}$-regular surfaces. We prove that ${\mathbb{H}}$-regular surfaces in $\mathbb{H}^{n}$ with $\alpha $-Hölder continuous horizontal normal, $\alpha> 0$, are metric bilipschitz rectifiable. This impr…

0209 industrial biotechnology020901 industrial engineering & automationGeneral Mathematics010102 general mathematicsMathematical analysisMetric (mathematics)Mathematics::Metric GeometryHölder condition02 engineering and technology0101 mathematics01 natural sciencesMathematicsInternational Mathematics Research Notices
researchProduct

A note on Kakeya sets of horizontal and SL(2) lines

2022

We consider unions of $SL(2)$ lines in $\mathbb{R}^{3}$. These are lines of the form $$L = (a,b,0) + \mathrm{span}(c,d,1),$$ where $ad - bc = 1$. We show that if $\mathcal{L}$ is a Kakeya set of $SL(2)$ lines, then the union $\cup \mathcal{L}$ has Hausdorff dimension $3$. This answers a question of Wang and Zahl. The $SL(2)$ lines can be identified with horizontal lines in the first Heisenberg group, and we obtain the main result as a corollary of a more general statement concerning unions of horizontal lines. This statement is established via a point-line duality principle between horizontal and conical lines in $\mathbb{R}^{3}$, combined with recent work on restricted families of projecti…

Mathematics - Metric Geometry28A78 28A80Mathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - CombinatoricsMetric Geometry (math.MG)Combinatorics (math.CO)mittateoria
researchProduct

Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal

2022

Two definitions for the rectifiability of hypersurfaces in Heisenberg groups Hn have been proposed: one based on H-regular surfaces and the other on Lipschitz images of subsets of codimension-1 vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole–Pauls, Bigolin–Vittone, and Antonelli–Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of H-regular surfaces. We prove that H-regular surfaces in Hn with α-Hölder continuous horizontal normal, α>0⁠, are metric bilipschitz rectifiable. This improves on the work by Antonelli–Le Donne, where the same conclusion was obtained for C∞-surfaces. In…

differentiaaligeometriamittateoriametriset avaruudet
researchProduct

Vertical versus horizontal Sobolev spaces

2020

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…

010102 general mathematicsMetric Geometry (math.MG)Function (mathematics)Lipschitz continuity01 natural sciencesFunctional Analysis (math.FA)Fractional calculusSobolev spaceCombinatoricsMathematics - Functional AnalysisMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesVertical directionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupOrder (group theory)010307 mathematical physics0101 mathematics46E35 (Primary) 26A33 35R03 43A15 (Secondary)AnalysisMathematics
researchProduct

On a Continuous Sárközy-Type Problem

2022

Abstract We prove that there exists a constant $\epsilon&amp;gt; 0$ with the following property: if $K \subset {\mathbb {R}}^2$ is a compact set that contains no pair of the form $\{x, x + (z, z^{2})\}$ for $z \neq 0$, then $\dim _{\textrm {H}} K \leq 2 - \epsilon $.

Szemerédi’s theoremfractalsGeneral Mathematicspolynomitpolynomial configurationsHausdorff dimensionfraktaalitmittateoriafinite fieldsharmoninen analyysiFourier transforms of measuresminimeasuresInternational Mathematics Research Notices
researchProduct

Integrability of orthogonal projections, and applications to Furstenberg sets

2022

Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method,…

28A80 (primary) 28A78 44A12 (secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsGeneral MathematicsFurstenberg setsIncidencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - CombinatoricsMetric Geometry (math.MG)k-plane transformCombinatorics (math.CO)Projections
researchProduct

Curve packing and modulus estimates

2018

A family of planar curves is called a Moser family if it contains an isometric copy of every rectifiable curve in $\mathbb{R}^{2}$ of length one. The classical "worm problem" of L. Moser from 1966 asks for the least area covered by the curves in any Moser family. In 1979, J. M. Marstrand proved that the answer is not zero: the union of curves in a Moser family has always area at least $c$ for some small absolute constant $c &gt; 0$. We strengthen Marstrand's result by showing that for $p &gt; 3$, the $p$-modulus of a Moser family of curves is at least $c_{p} &gt; 0$.

General MathematicsTHIN SETModulusconformal modulus01 natural sciencesThin setpotential theoryCombinatoricsNull set010104 statistics & probabilityPlanarCIRCLESMathematics - Metric GeometryClassical Analysis and ODEs (math.CA)FOS: Mathematics111 Mathematics0101 mathematicsAbsolute constantMathematicsMoser familyApplied Mathematicsta111010102 general mathematicsMathematical analysisZero (complex analysis)Metric Geometry (math.MG)28A75 (Primary) 31A15 60CXX (Secondary)measure theoryMathematics - Classical Analysis and ODEsFamily of curvespotentiaaliteoriamittateoriaMEASURE ZEROcurve packing problems
researchProduct