6533b860fe1ef96bd12c39e9

RESEARCH PRODUCT

On a Continuous Sárközy-Type Problem

Borys KucaTuomas OrponenTuomas Sahlsten

subject

Szemerédi’s theoremfractalsGeneral Mathematicspolynomitpolynomial configurationsHausdorff dimensionfraktaalitmittateoriafinite fieldsharmoninen analyysiFourier transforms of measuresminimeasures

description

Abstract We prove that there exists a constant $\epsilon> 0$ with the following property: if $K \subset {\mathbb {R}}^2$ is a compact set that contains no pair of the form $\{x, x + (z, z^{2})\}$ for $z \neq 0$, then $\dim _{\textrm {H}} K \leq 2 - \epsilon $.

https://doi.org/10.1093/imrn/rnac168