6533b860fe1ef96bd12c3c04
RESEARCH PRODUCT
Integrability of orthogonal projections, and applications to Furstenberg sets
Damian DąbrowskiTuomas OrponenMichele Villasubject
28A80 (primary) 28A78 44A12 (secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsGeneral MathematicsFurstenberg setsIncidencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - CombinatoricsMetric Geometry (math.MG)k-plane transformCombinatorics (math.CO)Projectionsdescription
Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method, we obtain a $\delta$-discretised sum-product estimate for $(\delta,s)$-sets. Our bound improves on a previous estimate of Chen for every $\tfrac{1}{2} < s < 1$, and also of Guth-Katz-Zahl for $s \geq 0.5151$.
year | journal | country | edition | language |
---|---|---|---|---|
2022-01-01 |