6533b7dafe1ef96bd126edb7

RESEARCH PRODUCT

Combinatorial proofs of two theorems of Lutz and Stull

Tuomas Orponen

subject

FOS: Computer and information sciences28A80 (primary) 28A78 (secondary)General MathematicskombinatoriikkaCombinatorial proofComputational Complexity (cs.CC)01 natural sciencesCombinatoricsMathematics - Metric GeometryHausdorff and packing measures0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsAlgorithmic information theoryLemma (mathematics)Euclidean spacePigeonhole principle010102 general mathematicsOrthographic projectionHausdorff spaceMetric Geometry (math.MG)Projection (relational algebra)Computer Science - Computational ComplexityMathematics - Classical Analysis and ODEsfraktaalit010307 mathematical physicsmittateoria

description

Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One of the theorems states that if $K \subset \mathbb{R}^{n}$ is any set with equal Hausdorff and packing dimensions, then $$ \dim_{\mathrm{H}} π_{e}(K) = \min\{\dim_{\mathrm{H}} K,1\} $$ for almost every $e \in S^{n - 1}$. Here $π_{e}$ stands for orthogonal projection to $\mathrm{span}(e)$. The primary purpose of this paper is to present proofs for Lutz and Stull's projection theorems which do not refer to information theoretic concepts. Instead, they will rely on combinatorial-geometric arguments, such as discretised versions of Kaufman's "potential theoretic" method, the pigeonhole principle, and a lemma of Katz and Tao. A secondary purpose is to slightly generalise Lutz and Stull's theorems: the versions in this paper apply to orthogonal projections to $m$-planes in $\mathbb{R}^{n}$, for all $0 < m < n$.

http://urn.fi/URN:NBN:fi:jyu-202103091905