Search results for "GEOMETRIA"

showing 10 items of 422 documents

Automorphisms of hyperelliptic GAG-codes

2009

Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.

Abelian varietyDiscrete mathematicsautomorphismsGroup (mathematics)Applied Mathematicsgeneralized algebraic geometry codes.Outer automorphism groupReductive groupAutomorphismTheoretical Computer ScienceCombinatoricsMathematics::Group Theorygeometric Goppa codeAlgebraic groupDiscrete Mathematics and Combinatoricsalgebraic function fieldsSettore MAT/03 - GeometriaIsomorphismfinite fieldsGeometric Goppa codesfinite fieldalgebraic function fieldHyperelliptic curvegeneralized algebraic-geometry codesMathematicsDiscrete Mathematics
researchProduct

An improvement of a bound of Green

2012

A p-group G of order pn (p prime, n ≥ 1) satisfies a classic Green's bound log p |M(G)| ≤ ½n(n - 1) on the order of the Schur multiplier M(G) of G. Ellis and Wiegold sharpened this restriction, proving that log p |M(G)| ≤ ½(d - 1)(n + m), where |G′| = pm(m ≥ 1) and d is the minimal number of generators of G. The first author has recently shown that log p |M(G)| ≤ ½(n + m - 2)(n - m - 1) + 1, improving not only Green's bound, but several other inequalities on |M(G)| in literature. Our main results deal with estimations with respect to the bound of Ellis and Wiegold.

Algebra and Number Theory$p$-groupApplied MathematicsSchur multiplierhomologyPrime (order theory)AlgebraCombinatoricsalgebraic topologyOrder (group theory)Algebraic topology (object)Settore MAT/03 - GeometriaSchur multiplierMathematics
researchProduct

Additivity of affine designs

2020

We show that any affine block design $$\mathcal{D}=(\mathcal{P},\mathcal{B})$$ is a subset of a suitable commutative group $${\mathfrak {G}}_\mathcal{D},$$ with the property that a k-subset of $$\mathcal{P}$$ is a block of $$\mathcal{D}$$ if and only if its k elements sum up to zero. As a consequence, the group of automorphisms of any affine design $$\mathcal{D}$$ is the group of automorphisms of $${\mathfrak {G}}_\mathcal{D}$$ that leave $$\mathcal P$$ invariant. Whenever k is a prime p,  $${\mathfrak {G}}_\mathcal{D}$$ is an elementary abelian p-group.

Algebra and Number Theory010102 general mathematics0102 computer and information sciencesAutomorphism01 natural sciencesCombinatoricsKeywords Affine block designs · Hadamard designs · Additive designs · Mathieu group M11010201 computation theory & mathematicsSettore MAT/05 - Analisi MatematicaAdditive functionDiscrete Mathematics and CombinatoricsAffine transformationSettore MAT/03 - Geometria0101 mathematicsInvariant (mathematics)Abelian groupMathematics
researchProduct

A coincidence-point problem of Perov type on rectangular cone metric spaces

2017

We consider a coincidence-point problem in the setting of rectangular cone metric spaces. Using alpha-admissible mappings and following Perov's approach, we establish some existence and uniqueness results for two self-mappings. Under a compatibility assumption, we also solve a common fixed-point problem.

Algebra and Number Theory010102 general mathematicsMathematical analysisGeometryType (model theory)01 natural sciencesRectangular cone metric space spectral radius solid cone g-contraction of Perov type -admissible mapping -g-contraction of Perov type010101 applied mathematicsMetric spaceCone (topology)Settore MAT/05 - Analisi MatematicaSettore MAT/03 - Geometria0101 mathematicsCoincidence pointAnalysisMathematicsThe Journal of Nonlinear Sciences and Applications
researchProduct

Free sequences and the tightness of pseudoradial spaces

2019

Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelof Hausdorff almost radial space X and the set-tightness of every Lindelof Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhasz, Soukup, Szentmiklossy and Weiss by proving that if X is a Lindelof Hausdorff space, and $$X_\delta $$ denotes the $$G_\delta $$ topology on X then $$t(X_\delta ) \le 2^{t(X)}$$ . Finally, we exploit this to prove that if X is a Lindelof Hausdorff pseudoradial space then $$F(X_\delta ) \le 2^{F(X)}$$ .

Algebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Hausdorff spaceMathematics::General TopologySpace (mathematics)01 natural sciencesInfimum and supremum010101 applied mathematicsCombinatoricsMathematics::LogicComputational MathematicsCharacter (mathematics)Free sequence tightness Lindelof degree pseudoradialFOS: MathematicsGeometry and TopologySettore MAT/03 - Geometria0101 mathematicsAnalysisMathematics - General TopologyMathematics
researchProduct

Cardinal estimates involving the weak Lindelöf game

2021

AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a wi…

Algebra and Number TheoryCardinal invariants Cardinality bounds First-countable Lindelöf Topological game Weakly LindelöfApplied MathematicsFirst-countable spaceHausdorff spaceESPAÇOS TOPOLÓGICOSUrysohn and completely Hausdorff spacesCombinatoricsComputational MathematicsTopological gameCardinalityCompact spaceCountable setSettore MAT/03 - GeometriaGeometry and TopologyContinuum (set theory)AnalysisMathematicsRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
researchProduct

Algebraic Frobenius groups

2000

AlgebraApplied MathematicsGeneral MathematicsSettore MAT/03 - GeometriaAlgebraic numberAlgebraic groups Frobenius groupsMathematics
researchProduct

On Hurwitz spaces of coverings with one special fiber

2009

Let X X' Y be a covering of smooth, projective complex curves such that p is a degree 2 etale covering and f is a degree d covering, with monodromy group Sd, branched in n + 1 points one of which is a special point whose local monodromy has cycle type given by the partition e = (e1,...,er) of d. We study such coverings whose monodromy group is either W(Bd) or wN(W(Bd))(G1)w-1 for some w in W(Bd), where W(Bd) is the Weyl group of type Bd, G1 is the subgroup of W(Bd) generated by reflections with respect to the long roots ei - ej and N(W(Bd))(G1) is the normalizer of G1. We prove that in both cases the corresponding Hurwitz spaces are not connected and hence are not irreducible. In fact, we s…

AlgebraCombinatoricsWeyl groupsymbols.namesakeMonodromyGeneral MathematicssymbolsPartition (number theory)Settore MAT/03 - GeometriaCentralizer and normalizerMathematicsHurwitz spaces connected components special fiber Weyl groups of type B_d
researchProduct

Algebraic Groups and Lie Groups with Few Factors

2008

In the theory of locally compact topological groups, the aspects and notions from abstract group theory have conquered a meaningful place from the beginning (see New Bibliography in [44] and, e.g. [41–43]). Imposing grouptheoretical conditions on the closed connected subgroups of a topological group has always been the way to develop the theory of locally compact groups along the lines of the theory of abstract groups. Despite the fact that the class of algebraic groups has become a classical object in the mathematics of the last decades, most of the attention was concentrated on reductive algebraic groups. For an affine connected solvable algebraic group G, the theorem of Lie–Kolchin has b…

Algebraic groups Lie groupsSettore MAT/03 - Geometria
researchProduct

Geometry of Quadrangles in Almqvist’s The Queen’s Tiara

2018

Quadrangles are repeatedly used in construction of scenes in Swedish author C. J. L. Almqvist’s novel The Queen’s Tiara. They limit and frame views. Repeating these structures creates connections between scenes. They form in relations between characters. Several quadrangular structures form around one main character called Tintomara, when she involuntarily attracts characters that fall in love in her. Also, quadrangles inside and beside each other are visible in scenes. Almqvist presented these forms in the elementary geometry textbook he published a year before this novel. peerReviewed

Almqvist C. J. L.SwedenkirjallisuusmatematiikkaKolmårdenTukholmaRuotsiliterature research [The Queen's Tiara]Almqvist Carl Jonas LoveThe Queen's Tiarakirjallisuudentutkimusgeometriaromaanit1700-luku1800-luku
researchProduct