6533b828fe1ef96bd12890b0

RESEARCH PRODUCT

Cardinal estimates involving the weak Lindelöf game

Leandro F. AurichiAngelo BellaSanti Spadaro

subject

Algebra and Number TheoryCardinal invariants Cardinality bounds First-countable Lindelöf Topological game Weakly LindelöfApplied MathematicsFirst-countable spaceHausdorff spaceESPAÇOS TOPOLÓGICOSUrysohn and completely Hausdorff spacesCombinatoricsComputational MathematicsTopological gameCardinalityCompact spaceCountable setSettore MAT/03 - GeometriaGeometry and TopologyContinuum (set theory)AnalysisMathematics

description

AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a winning strategy in the game $$G^{\omega _1}_{fin}({\mathcal {O}}, {\mathcal {O}}_D)$$ G fin ω 1 ( O , O D ) , providing some partial answers to it. We finish by constructing an example of a compact space where player II does not have a winning strategy in the weak Lindelöf game of length $$\omega _1$$ ω 1 .

https://doi.org/10.1007/s13398-021-01141-0