0000000000050109

AUTHOR

Angelo Bella

showing 10 related works from this author

A note on rank 2 diagonals

2020

<p>We solve two questions regarding spaces with a (G<sub>δ</sub>)-diagonal of rank 2. One is a question of Basile, Bella and Ridderbos about weakly Lindelöf spaces with a G<sub>δ</sub>-diagonal of rank 2 and the other is a question of Arhangel’skii and Bella asking whether every space with a diagonal of rank 2 and cellularity continuum has cardinality at most continuum.</p>

DiagonalCardinal invariantsMathematics::General TopologyWeakly Lindelöflcsh:AnalysisSpace (mathematics)01 natural sciencesCombinatoricsBELLACardinalitydual propertiesCardinality boundsFOS: MathematicsRank (graph theory)Continuum (set theory)0101 mathematicsDual propertiesMathematics - General TopologyMathematicsweakly LindelofGδ- diagonallcsh:Mathematics010102 general mathematicsGeneral Topology (math.GN)neighbourhood assignmentGδ-diagonallcsh:QA299.6-433lcsh:QA1-939gδ-diagonal010101 applied mathematicscardinality boundsMathematics::LogicNeighbourhood assignmentSettore MAT/03 - GeometriaGeometry and Topologyweakly lindelöf
researchProduct

A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality

2019

AbstractWe present a result about $G_{\unicode[STIX]{x1D6FF}}$ covers of a Hausdorff space that implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: $|X|\leqslant 2^{L(X)\unicode[STIX]{x1D712}(X)}$ (Arhangel’skiĭ) and $|X|\leqslant 2^{c(X)\unicode[STIX]{x1D712}(X)}$ (Hajnal–Juhász). This solves a question that goes back to Bell, Ginsburg and Woods’s 1978 paper (M. Bell, J.N. Ginsburg and R.G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79(1978), 37–45) and is mentioned in Hodel’s survey on Arhangel’skiĭ’s Theorem (R. Hodel, Arhangel’skii’s so…

Inequalitycardinal invariantsLindelofGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsGeneral Topology (math.GN)Hausdorff spaceContrast (statistics)Mathematics::General TopologyExtension (predicate logic)01 natural sciencesSeparation axiom010101 applied mathematicsCombinatoricsMathematics::LogiccellularityCardinality boundsFOS: MathematicsSettore MAT/03 - Geometria0101 mathematicsTopology (chemistry)media_commonMathematicsMathematics - General Topology
researchProduct

Cardinal estimates involving the weak Lindelöf game

2021

AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a wi…

Algebra and Number TheoryCardinal invariants Cardinality bounds First-countable Lindelöf Topological game Weakly LindelöfApplied MathematicsFirst-countable spaceHausdorff spaceESPAÇOS TOPOLÓGICOSUrysohn and completely Hausdorff spacesCombinatoricsComputational MathematicsTopological gameCardinalityCompact spaceCountable setSettore MAT/03 - GeometriaGeometry and TopologyContinuum (set theory)AnalysisMathematicsRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
researchProduct

Cardinal invariants of cellular Lindelof spaces

2018

A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…

Arhangel’skii TheoremMathematics::General MathematicsDiagonalMathematics::General TopologyRank (differential topology)Space (mathematics)01 natural sciencesCombinatoricsCountable chain conditionCardinalityCardinal inequalityLindelöf spaceFOS: MathematicsContinuum (set theory)0101 mathematicsMathematicsMathematics - General TopologyAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Nonlinear Sciences::Cellular Automata and Lattice Gases· Elementary submodel010101 applied mathematicsMonotonically normal spaceMathematics::LogicComputational MathematicsLindelöf spaceCountable chain conditionGeometry and TopologyAnalysis
researchProduct

Cardinal Invariants for the $G_\delta$ topology

2017

We prove upper bounds for the spread, the Lindel\"of number and the weak Lindel\"of number of the $G_\delta$-topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juh\'asz and van Mill regarding the cardinality of a $\sigma$-countably tight homogeneous compactum.

General MathematicsMathematics::General TopologyGδ-topologyTopological spaceLindelof degreeCombinatoricsMathematics::LogicCardinalityHomogeneoushomogeneous spaceCardinal invariantTopology (chemistry)MathematicsMathematics - General Topology
researchProduct

Upper bounds for the tightness of the $$G_\delta $$-topology

2021

We prove that if X is a regular space with no uncountable free sequences, then the tightness of its $$G_\delta $$ topology is at most the continuum and if X is, in addition, assumed to be Lindelof then its $$G_\delta $$ topology contains no free sequences of length larger then the continuum. We also show that, surprisingly, the higher cardinal generalization of our theorem does not hold, by constructing a regular space with no free sequences of length larger than $$\omega _1$$ , but whose $$G_\delta $$ topology can have arbitrarily large tightness.

Delta010505 oceanographyContinuum (topology)GeneralizationGeneral Mathematics010102 general mathematicsFree sequenceTopologyLindelöf01 natural sciencesOmegaArbitrarily largeGdelta-topologyRegular spaceUncountable set0101 mathematicsTopology (chemistry)Tightness0105 earth and related environmental sciencesMathematicsMonatshefte für Mathematik
researchProduct

Variations of selective separability II: Discrete sets and the influence of convergence and maximality

2012

A space $X$ is called selectively separable(R-separable) if for every sequence of dense subspaces $(D_n : n\in\omega)$ one can pick finite (respectively, one-point) subsets $F_n\subset D_n$ such that $\bigcup_{n\in\omega}F_n$ is dense in $X$. These properties are much stronger than separability, but are equivalent to it in the presence of certain convergence properties. For example, we show that every Hausdorff separable radial space is R-separable and note that neither separable sequential nor separable Whyburn spaces have to be selectively separable. A space is called \emph{d-separable} if it has a dense $\sigma$-discrete subspace. We call a space $X$ D-separable if for every sequence of …

54D65 54A25 54D55 54A20H-separable spaceSubmaximalD+-separable spaceSequential spaceFUNCTION-SPACESSeparable spaceSpace (mathematics)INVARIANTSSeparable spaceCombinatoricsGN-separable spaceStrong fan tightnessM-separable spaceMaximal spaceConvergence (routing)Radial spaceFOS: MathematicsFréchet spaceCountable setStratifiable spaceWhyburn propertyTOPOLOGIESDH+-separable spaceTightnessMathematics - General TopologyMathematicsDH-separable spaceD-separable spaceSequenceExtra-resolvable spaceGeneral Topology (math.GN)Hausdorff spaceResolvableR-separable spaceLinear subspaceResolvable spaceSequentialDiscretely generated spaceSubmaximal spaceGeometry and TopologyTOPOLOGIES; FUNCTION-SPACES; INVARIANTSSS+ spaceFan tightnessCrowded spaceSubspace topologyTopology and its Applications
researchProduct

On the cardinality of almost discretely Lindelof spaces

2016

A space is said to be almost discretely Lindelof if every discrete subset can be covered by a Lindelof subspace. Juhasz et al. (Weakly linearly Lindelof monotonically normal spaces are Lindelof, preprint, arXiv:1610.04506 ) asked whether every almost discretely Lindelof first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under $$2^{<{\mathfrak {c}}}={\mathfrak {c}}$$ (which is a consequence of Martin’s Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhasz et al. (First-countable and almost discretely Lindelof $$T_3$$ spaces have cardinality at most continuum, preprint, arXiv:1612.06651 ). We conclude with a few rel…

Discrete mathematicsCardinal inequality Lindelof space Arhangel’skii Theorem elementary submodel left-separated discrete set free sequence.General Mathematics010102 general mathematicsHausdorff spaceGeneral Topology (math.GN)Mathematics::General TopologyMonotonic functionSpace (mathematics)01 natural sciences010101 applied mathematicsMathematics::LogicCardinalityLindelöf spaceFOS: MathematicsSettore MAT/03 - GeometriaContinuum (set theory)0101 mathematicsSubspace topologyAxiomMathematics - General TopologyMathematics
researchProduct

Infinite games and cardinal properties of topological spaces

2015

Inspired by work of Scheepers and Tall, we use properties defined by topological games to provide bounds for the cardinality of topological spaces. We obtain a partial answer to an old question of Bell, Ginsburg and Woods regarding the cardinality of weakly Lindel¨of first-countable regular spaces and answer a question recently asked by Babinkostova, Pansera and Scheepers. In the second part of the paper we study a game-theoretic version of cellularity, a special case of which has been introduced by Aurichi. We obtain a game-theoretic proof of Shapirovskii’s bound for the number of regular open sets in an (almost) regular space and give a partial answer to a natural question about the produ…

Arhangel’skii TheoremLindelofH-closed.Infinite games
researchProduct

Cardinal inequalities involving the Hausdorff pseudocharacter

2023

We establish several bounds on the cardinality of a topological space involving the Hausdorff pseudocharacter $H\psi(X)$. This invariant has the property $\psi_c(X)\leq H\psi(X)\leq\chi(X)$ for a Hausdorff space $X$. We show the cardinality of a Hausdorff space $X$ is bounded by $2^{pwL_c(X)H\psi(X)}$, where $pwL_c(X)\leq L(X)$ and $pwL_c(X)\leq c(X)$. This generalizes results of Bella and Spadaro, as well as Hodel. We show additionally that if $X$ is a Hausdorff linearly Lindel\"of space such that $H\psi(X)=\omega$, then $|X|\le 2^\omega$, under the assumption that either $2^{&lt;\mathfrak{c}}=\mathfrak{c}$ or $\mathfrak{c}&lt;\aleph_\omega$. The following game-theoretic result is shown: i…

Cardinality bounds Hausdorff pseudocharacter Topological gamesSettore MAT/03 - Geometria
researchProduct