6533b85cfe1ef96bd12bcaad

RESEARCH PRODUCT

Cardinal invariants of cellular Lindelof spaces

Angelo BellaSanti Spadaro

subject

Arhangel’skii TheoremMathematics::General MathematicsDiagonalMathematics::General TopologyRank (differential topology)Space (mathematics)01 natural sciencesCombinatoricsCountable chain conditionCardinalityCardinal inequalityLindelöf spaceFOS: MathematicsContinuum (set theory)0101 mathematicsMathematicsMathematics - General TopologyAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Nonlinear Sciences::Cellular Automata and Lattice Gases· Elementary submodel010101 applied mathematicsMonotonically normal spaceMathematics::LogicComputational MathematicsLindelöf spaceCountable chain conditionGeometry and TopologyAnalysis

description

A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindelof space with a $$G_\delta $$ -diagonal of rank 2 has cardinality at most continuum.

10.1007/s13398-019-00660-1http://hdl.handle.net/10447/480992