0000000000640420
AUTHOR
Leandro F. Aurichi
Cardinal estimates involving the weak Lindelöf game
AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a wi…
Selective versions of chain condition-type properties
We study selective and game-theoretic versions of properties like the ccc, weak Lindel\"ofness and separability, giving various characterizations of them and exploring connections between these properties and some classical cardinal invariants of the continuum.