Search results for "GRADE"
showing 10 items of 695 documents
Circolazione e sviluppo di un modello metodologico. La critica testuale delle fonti giuridiche romane fra Otto Gradenwitz e Salvatore Riccobono
2018
La ricerca delle interpolazioni, cominciata con la Scula culta, viene ripresa in Germania alla fine del XIX secolo. Fra quanti misero a punto un metodo storico-critico per lo studio delle fonti giuridiche romane va menzionato anche Gradenwitz, che – insieme ad altri studiosi tedeschi – sarebbe stato uno dei maestri di Riccobono. La prima produzione scientifica di Riccobono, che si riconosce nel nuovo indirizzo storico-critico affermatosi in Germania, si avvale dei metodi appresi dai maestri tedeschi. Lungo questo solco, tuttavia, comincia l’elaborazione di un metodo più raffinato, che distingue fra interpolazioni formali e interpolazioni sostanziali e recupera gradualmente altri strumenti d…
Graded polynomial identities and codimensions: Computing the exponential growth
2010
Abstract Let G be a finite abelian group and A a G-graded algebra over a field of characteristic zero. This paper is devoted to a quantitative study of the graded polynomial identities satisfied by A. We study the asymptotic behavior of c n G ( A ) , n = 1 , 2 , … , the sequence of graded codimensions of A and we prove that if A satisfies an ordinary polynomial identity, lim n → ∞ c n G ( A ) n exists and is an integer. We give an explicit way of computing such integer by proving that it equals the dimension of a suitable finite dimension semisimple G × Z 2 -graded algebra related to A.
Graded algebras with polynomial growth of their codimensions
2015
Abstract Let A be an algebra over a field of characteristic 0 and assume A is graded by a finite group G . We study combinatorial and asymptotic properties of the G -graded polynomial identities of A provided A is of polynomial growth of the sequence of its graded codimensions. Roughly speaking this means that the ideal of graded identities is “very large”. We relate the polynomial growth of the codimensions to the module structure of the multilinear elements in the relatively free G -graded algebra in the variety generated by A . We describe the irreducible modules that can appear in the decomposition, we show that their multiplicities are eventually constant depending on the shape obtaine…
Ordinary and graded cocharacter of the Jordan algebra of 2x2 upper triangular matrices
2014
Abstract Let F be a field of characteristic zero and U J 2 ( F ) be the Jordan algebra of 2 × 2 upper triangular matrices over F . In this paper we give a complete description of the space of multilinear graded and ordinary identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . For every Z 2 -grading of U J 2 ( F ) we compute the multiplicities in the graded cocharacter sequence and furthermore we compute the ordinary cocharacter.
Polynomial identities on superalgebras: Classifying linear growth
2006
Abstract We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.
Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac
1991
We consider a class of indecomposable modules over the Virasoro Lie algebra that we call bounded admissible modules. We get results concerning the center and the dimensions of the weight spaces. We prove that these modules always contain a submodule with one-dimensional weight spaces. From this follows the proof of a conjecture of V. Kac concerning the classification of simple admissible modules.
Non-integrality of the PI-exponent of special Lie algebras
2013
If L is a special Lie algebra over a field of characteristic zero, its sequence of codimensions is exponentially bounded. The PI-exponent measures the exponential rate of growth of such sequence and here we give a first example of a special Lie algebra whose (upper and lower) PI-exponent is non-integer.
On the Codimension Growth of Finite-Dimensional Lie Algebras
1999
Abstract We study the exponential growth of the codimensions cn(L) of a finite-dimensional Lie algebra L over a field of characteristic zero. We show that if the solvable radical of L is nilpotent then lim n → ∞ c n ( L ) exists and is an integer.
LEFT INVARIANT COMPLEX STRUCTURES ON NILPOTENT SIMPLY CONNECTED INDECOMPOSABLE 6-DIMENSIONAL REAL LIE GROUPS
2007
Integrable complex structures on indecomposable 6-dimensional nilpotent real Lie algebras have been computed in a previous paper, along with normal forms for representatives of the various equivalence classes under the action of the automorphism group. Here we go to the connected simply connected Lie group G0 associated to such a Lie algebra 𝔤. For each normal form J of integrable complex structures on 𝔤, we consider the left invariant complex manifold G = (G0, J) associated to G0 and J. We explicitly compute a global holomorphic chart for G and we write down the multiplication in that chart.
Some criteria for detecting capable Lie algebras
2013
Abstract In virtue of a recent bound obtained in [P. Niroomand, F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011) 1293–1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich–Zhou).