Search results for "GRAPHENE OXIDE"
showing 10 items of 82 documents
Photothermal Ablation of Cancer Cells Using Folate-Coated Gold/ Graphene Oxide Composite
2017
Objective: A new tumor targeted polymer-coated gold/graphene hybrid has been developed for achieving simultaneously thermoablation and chemoterapy of folate receptor-positive cancer cells. Methods: The gold/graphene hybrid was prepared by depositing gold nanospheres onto graphene oxide and coating it with an inulin-folate conjugate. Paclitaxel was loaded by sonication. The hybrid was characterized by UV-Vis spectroscopy, DSC analysis and SEM microscopy. The cytotoxicity, thermoablation and anticancer activity were evaluated in vitro on MCF-7 and 16 HBE. Results: In vitro tests showed that the paclitaxel-loaded hybrid improved the effectiveness of the drug especially after photothermal treat…
Investigation of Acetone Vapour Sensing Properties of a Ternary Composite of Doped Polyaniline, Reduced Graphene Oxide and Chitosan Using Surface Pla…
2020
This work reports the use of a ternary composite that integrates p-Toluene sulfonic acid doped polyaniline (PANI), chitosan, and reduced graphene oxide (RGO) as the active sensing layer of a surface plasmon resonance (SPR) sensor. The SPR sensor is intended for application in the non-invasive monitoring and screening of diabetes through the detection of low concentrations of acetone vapour of less than or equal to 5 ppm, which falls within the range of breath acetone concentration in diabetic patients. The ternary composite film was spin-coated on a 50-nm-thick gold layer at 6000 rpm for 30 s. The structure, morphology and chemical composition of the ternary composite samples were character…
Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Ap…
2020
[EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PE…
Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites.
2012
[EN] Thermal treatment of the hybrid material formed by the spontaneous precipitation of graphene oxide and Ni,Mn layered double hydroxide leads to the segregation of nickel metal nanoparticles (Ni NPs) and the decomposition of graphene to CO2. Increasing the temperature increases the Ni NP size and results in the complete disappearance of graphene.
Dimensional Confinement in Carbon-based Structures - From 3D to 1D
2017
We present an overview of charge transport in selected one-, two- and three-dimensional carbon-based materials with exciting properties. The systems are atomically defined bottom-up synthesized graphene nanoribbons, doped graphene and turbostratic graphene micro-disks, where up to 100 graphene layers are rotationally stacked. For turbostratic graphene we show how this system lends itself to spintronic applications. This follows from the inner graphene layers where charge carriers are protected and thus highly mobile. Doped graphene and graphene nanoribbons offer the possibility to tailor the electronic properties of graphene either by introducing heteroatoms or by confining the system geome…
The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing
2015
In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and s…
Graphene and graphene oxide on Ir(111) are transparent to wetting but not to icing
2021
Anti-icing coatings reduce the freezing onset temperature for water by changing the chemical and physical environment at the water-substrate interface to prevent ice nucleation and growth. Graphene oxide has several attributes that make it attractive as an anti-icing coating and it has been theoretically predicted that graphene oxide has a lower freezing onset temperature than pristine graphene. Here, we test this hypothesis using carefully prepared, well-characterized graphene oxide substrates. We compare the water contact angle for graphene and graphene oxide coatings, both prepared on iridium(111) surfaces. The results show both materials to be transparent to wetting, but indicate a lowe…
PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring
2021
Nowadays, we are assisting in the exceptional growth in research relating to the development of wearable devices for sweat analysis. Sweat is a biofluid that contains useful health information and allows a non-invasive, continuous and comfortable collection. For this reason, it is an excellent biofluid for the detection of different analytes. In this work, electrochemical sensors based on polyaniline thin films deposited on the flexible substrate polyethylene terephthalate coated with indium tin oxide were studied. Polyaniline thin films were abstained by the potentiostatic deposition technique, applying a potential of +2 V vs. SCE for 90 s. To improve the sensor performance, the electronic…
Electrochemical Quantification of H2O2 Released by Airway Cells Growing in Different Culture Media
2022
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham’s F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrode…
Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer.
2017
Here, we reported the production of hyaluronic acid/polyaspartamide-based double-network nanogels for the potential treatment of colorectal carcinoma. Graphene oxide, thanks to the huge aromatic surface area, allows to easily load high amount of irinotecan (33.0% w/w) and confers to the system hyperthermic properties when irradiated with a near-infrared (NIR) laser beam. We demonstrate that the release of antitumor drug is influenced both by the pH of the external medium and the NIR irradiation process. In vitro biological studies, conducted on human colon cancer cells (HCT 116), revealed that nanogels are uptaken by the cancer cells and, in the presence of the antitumor drug, can produce a…