Search results for "Gallium Compounds"

showing 4 items of 14 documents

Optical characterization of Mg-doped GaN films grown by metalorganic chemical vapor phase deposition

2000

Scanning electron microscopy, micro-Raman, and photoluminescence (PL) measurements are reported for Mg-doped GaN films grown on (0001) sapphire substrates by low-pressure metalorganic chemical vapor phase deposition. The surface morphology, structural, and optical properties of GaN samples with Mg concentrations ranging from 1019 to 1021 cm−3 have been studied. In the scanning micrographs large triangular pyramids are observed, probably due to stacking fault formation and three-dimensional growth. The density and size of these structures increase with the amount of magnesium incorporated in the samples. In the photoluminescence spectra, intense lines were found at 3.36 and 3.31 eV on the tr…

PhotoluminescenceMaterials scienceIII-V semiconductorsScanning electron microscopeAnalytical chemistryGeneral Physics and AstronomySemiconductor thin filmsChemical vapor depositionStacking faultsSurface topographysymbols.namesake:FÍSICA [UNESCO]MagnesiumGallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Magnesium ; Semiconductor thin films ; MOCVD coatings ; Scanning electron microscopy ; Raman spectra ; Photoluminescence ; Surface composition ; Surface topography ; Stacking faults ; Inclusions ; ExcitonsPhotoluminescenceWurtzite crystal structureDopingUNESCO::FÍSICAGallium compoundsWide band gap semiconductorsMOCVD coatingsSurface compositionInclusionssymbolsSapphireExcitonsRaman spectraRaman spectroscopyScanning electron microscopyStacking fault
researchProduct

Modulation of the electronic properties of GaN films by surface acoustic waves

2003

We report on the interaction between photogenerated electron-hole pairs and surface acoustic waves (SAW) in GaN films grown on sapphire substrates. The spatial separation of photogenerated carriers by the piezoelectric field of the SAW is evidenced by the quenching of the photoluminescence (PL) intensity. The quenching levels in GaN are significantly smaller than those measured in GaAs under similar conditions. The latter is attributed to the lower exciton ionization efficiency and carrier separation probabilities mediated by the piezoelectric effect. The PL spectra also evidence energy shifts and broadenings of the electronic transitions, which are attributed to the band gap modulation by …

PhotoluminescenceMaterials scienceIII-V semiconductorsSurface acoustic wavesBand gapExcitonRadiation quenchingGeneral Physics and AstronomySemiconductor thin filmsCondensed Matter::Materials Science:FÍSICA [UNESCO]IonizationPiezoelectric semiconductorsPhotoluminescenceQuenchingbusiness.industryUNESCO::FÍSICAWide-bandgap semiconductorGallium compoundsAcoustic waveCondensed Matter::Mesoscopic Systems and Quantum Hall EffectWide band gap semiconductorsGallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Surface acoustic waves ; Semiconductor thin films ; Photoluminescence ; Radiation quenching ; Piezoelectric semiconductors ; Excitons ; Energy gapEnergy gapSapphireOptoelectronicsExcitonsbusiness
researchProduct

High accuracy Raman measurements using the Stokes and anti-Stokes lines

1997

We show that by measuring the separation between the Stokes and anti-Stokes peaks excited by two different laser lines we obtain a very precise determination of absolute phonon energies. The method is useful for measuring small changes of these energies with strain, temperature, laser power, etc. It doubles the changes and avoids the necessity of using the reference lines in the Raman spectra. The method can be applied for the determination of phonon deformation potentials, for the characterization of strained heteroepitaxial layers, and for micro-Raman analysis of strain in silicon integrated circuits. We give examples of phonon shifts in Si, Ge, GaAs, InAs, and GaP as a function of applie…

SiliconMaterials scienceSiliconRaman SpectraPhononAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementIndium CompoundsMolecular physicsGallium arsenidelaw.inventionGallium Arsenidesymbols.namesakechemistry.chemical_compoundThermo-Optical EffectsCondensed Matter::Materials Sciencelaw:FÍSICA [UNESCO]Laser power scalingSemiconductor Epitaxial LayersLaser Beam EffectsElemental SemiconductorsSilicon ; Germanium ; Elemental Semiconductors ; Gallium Arsenide ; Indium Compounds ; Gallium Compounds ; III-V Semiconductors ; Raman Spectra ; Phonon Spectra ; Semiconductor Epitaxial Layers ; Integrated Circuit Technology ; Deformation ; Laser Beam Effects ; Thermo-Optical EffectsGermaniumUNESCO::FÍSICAIII-V SemiconductorsPhonon SpectraLaserCondensed Matter::Mesoscopic Systems and Quantum Hall EffectIntegrated Circuit TechnologyDeformationchemistryExcited stateGallium CompoundssymbolsDeformation (engineering)Raman spectroscopy
researchProduct

Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure

2021

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540) as well as by the Latvian research council via the Latvian National Research Program under the topic ?High-Energy Physics and Accelerator Technologies?, Agreement No: VPP-IZM-CERN-2020/1-0002 for A.I. Popov. In addition, J. Purans is grateful to the ERAF project 1.1.1.1/20/A/057 while A. Platonenko was supported by Latvian Research Council No. LZP-2018/1-0214. The authors thank A. Lushchik and M. Lushchik for many useful discussions. The research was (partly) performed in the Institute of Solid State Physics, University of Latvia ISSP UL. ISSP UL as…

TechnologyDEEP DONOR02 engineering and technologyConductivityDFT01 natural sciencesOXYGENCrystalpoint defectsGeneral Materials ScienceDENSITY FUNCTIONAL THEORYGalliump-type conductivityMicroscopyQC120-168.85Condensed matter physicsMONOCLINICSTP TYPE CONDUCTIVITYELECTRONIC.STRUCTUREEngineering (General). Civil engineering (General)021001 nanoscience & nanotechnology3. Good healthCALCULATIONSβ-Ga<sub>2</sub>O<sub>3</sub>OXYGEN VACANCIES:NATURAL SCIENCES [Research Subject Categories]Density functional theoryElectrical engineering. Electronics. Nuclear engineeringTA1-20400210 nano-technologyPOINT DEFECTSFIRST PRINCIPLE CALCULATIONSβ-Ga2O3Materials scienceP-TYPE CONDUCTIVITYELECTRONIC STRUCTUREVACANCY DEFECTSchemistry.chemical_elementElectronic structureFIRST-PRINCIPLE DENSITY-FUNCTIONAL THEORIESGALLIUM COMPOUNDSArticleDENSITY-FUNCTIONAL-THEORYVacancy defect0103 physical sciences010306 general physicsΒ-GA2 O3QH201-278.5HYBRID EXCHANGEoxygen vacancyCrystallographic defectTK1-9971Descriptive and experimental mechanicschemistryGALLIUMdeep donorSupercell (crystal)DFT; β-Ga<sub>2</sub>O<sub>3</sub>; oxygen vacancy; deep donor; p-type conductivity; point defectsOXYGEN VACANCYMaterials
researchProduct