Search results for "Garnet"

showing 10 items of 55 documents

Pressure-induced amorphization of the Y3Ga5O12 garnet studied to 1 Mbar

2020

We use micro-beam synchrotron x-ray diffraction to study the pressure-induced amorphization of nano-sized and single crystals of Y3Ga5O12 up to pressures exceeding 1 Mbar in static compression. The abrupt pressure-induced amorphization found for both 56 nm and bulk micrometric crystals at around 76 GPa independently of the pressure transmitting medium employed demonstrates its intrinsic nature, previously predicted at 79 GPa by ab initio calculations. The single crystal structural solution at 50 GPa shows that the contraction of the unit-cell, mostly accommodated by the compressible YO8 dodecahedra, gives rise to a regularization and tilting increase of the GaO6 polyhedra with the Y?O-Ga an…

DiffractionMaterials science02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionDodecahedronAb initio quantum chemistry methodslawMaterials ChemistryPressureBulk modulusCondensed matter physicsMechanical EngineeringMetals and AlloysGarnets021001 nanoscience & nanotechnologySynchrotronAmorphization0104 chemical sciencesX-ray diffractionNanocrystalMechanics of MaterialsX-ray crystallography0210 nano-technologySingle crystal
researchProduct

In situ analysis of garnet inclusion in diamond using single-crystal X-ray diffraction and X-ray micro-tomography

2012

A single crystal of garnet enclosed in a diamond from the Jericho kimberlite (Slave Craton, Canada) has been investigated using X-ray diffraction and X-ray micro-tomography. The novel experimental approach allowed us to determine the crystal structure of the garnet. The unit-cell edge a and fractional atomic coordinates of oxygen were used to determine the composition via an updated Margules model for garnets. The composition is Pyr(0.41(5))Alm(0.36(7))Gro(0.22(1))Uva(0.01(1)), which is indistinguishable from the eclogitic garnets found in other Jericho diamonds. We also demonstrated that residual pressures on the inclusion of up to 1 GPa do not affect significantly the determination of the…

Diffractiondiamond garnet inclusion residual pressure x-ray diffraction x-ray micro-tomography jericho kimberliteAnalytical chemistryMineralogyCrystal structureJericho kimberliteengineering.materialdiamondGeochemistry and PetrologyInclusionSettore GEO/06 - MineralogiaX-rayDiamondgarnetx-ray micro-tomographyX-ray diffractionresidual pressurex-ray microtomographydiamond; garnet; Inclusion; X-ray diffraction; x-ray microtomographyX-ray crystallographyengineeringInclusion (mineral)Single crystalKimberliteGeology
researchProduct

Length Scale of the Spin Seebeck Effect

2015

We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50  μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allow…

Length scaleMaterials scienceCondensed matter physicsSpin polarizationMagnonYttrium iron garnetGeneral Physics and Astronomypacs:72.25.-bCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistrypacs:72.20.Papacs:75.40.GbSpin waveFerrimagnetismThermoelectric effectddc:530Condensed Matter::Strongly Correlated Electronspacs:75.30.DsSpin-½Physical Review Letters
researchProduct

Luminescence and scintillation properties of Mg-codoped LuAG:Pr single crystals annealed in air

2017

Abstract The influence of the Mg 2+ codoping and annealing in the air on the scintillation and luminescence characteristics of Pr-doped lutetium-aluminum garnet crystals (LuAG) was studied to find a possible positive effect of Pr 4+ . The overall scintillation efficiency under X-ray excitation of the annealed Pr- doped samples decreased with increasing Mg concentration. This was explained by increased overlap of the Pr 3+ 5d-4f emission with the charge-transfer (CT) absorption band of the Pr 4+ ion stabilized by Mg 2+ . This absorption caused even greater decrease of the light yield, as the light is collected from the whole sample volume in the pulse-height spectrum measurement. Electron ce…

LuminescenceMaterials sciencePhotoluminescenceChemistry(all)Scintillation; Pr4+BiophysicsAnalytical chemistry02 engineering and technology01 natural sciences7. Clean energyBiochemistrylaw.inventionIonLutetium–aluminum garnetOpticslaw0103 physical sciencesElectron paramagnetic resonance010302 applied physicsScintillationbusiness.industryDopingGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsAbsorption bandExcited stateCodoping0210 nano-technologybusinessLuminescenceJournal of Luminescence
researchProduct

Effect of Mg 2+ ions co-doping on luminescence and defects formation processes in Gd 3 (Ga,Al) 5 O 12 :Ce single crystals

2017

The work was supported by the Institutional Research Funding IUT02-26 of the Estonian Ministry of Education and Research and the project 16-15569S of the Czech Science Foundation.

LuminescencePhotoluminescenceMaterials scienceAnalytical chemistryMg2+02 engineering and technologyCrystal structure01 natural sciencesInorganic ChemistryCe3+0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Electrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopyMulticomponent garnets010302 applied physicsOrganic ChemistryDopingRadioluminescenceAtmospheric temperature range021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPhotoexcitationCrystallographyAbsorption bandScintillatorsSingle crystals0210 nano-technologyLuminescenceOptical Materials
researchProduct

Interfacial Dzyaloshinskii-Moriya interaction and chiral magnetic textures in a ferrimagnetic insulator

2019

The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dynamics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, comb…

Materials science530 Physicschemistry.chemical_elementFOS: Physical sciencesInsulator (electricity)02 engineering and technology01 natural sciencesCondensed Matter::Materials Sciencechemistry.chemical_compoundFerrimagnetism0103 physical sciences010306 general physicsCondensed Matter - Materials ScienceCondensed matter physicsSkyrmionGadolinium gallium garnetMaterials Science (cond-mat.mtrl-sci)Heterojunction530 Physik021001 nanoscience & nanotechnologyThuliumchemistryFerromagnetismMagnetic dampingCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review B
researchProduct

Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics

2021

The authors acknowledge the expert help of the staff of MAX IV Laboratory. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. I.V. acknowledges the support of Russian Foundation for Basic Research # 20-52-S52001.

Materials scienceAbsorption spectroscopyExcitonBiophysicsAnalytical chemistry02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyBiochemistryCeSynchrotronTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYSpectroscopy:NATURAL SCIENCES::Physics [Research Subject Categories]General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsXANESXANES0104 chemical sciencesAbsorption edgeCe4+Absorption bandEnergy transferGarnet scintillatorsExcited stateExcitons0210 nano-technologyLuminescence
researchProduct

Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

2014

Yttrium iron garnet (YIG, Y [subscript 3]Fe[subscript 5]O[subscript 12]) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd[subscript 3]Ga[subscript 5]O[subscript 12]) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm[superscript −3]), in-plane easy axis, and damping parameters as low as 2.2 × 10[superscript −4]. These high quality YIG thin films are useful in the investigation…

Materials scienceCondensed matter physicslcsh:BiotechnologyGeneral EngineeringYttrium iron garnetGadolinium gallium garnetchemistry.chemical_elementYttriumCoercivitylcsh:QC1-999Pulsed laser depositionchemistry.chemical_compoundMagnetic anisotropyNuclear magnetic resonancechemistrylcsh:TP248.13-248.65General Materials ScienceThin filmSaturation (magnetic)lcsh:PhysicsAPL Materials
researchProduct

Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

2012

International audience; YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The…

Materials scienceCoprecipitationInorganic chemistryOxideTRANSPARENT CERAMICSFABRICATIONchemistry.chemical_element02 engineering and technology01 natural scienceslaw.inventionInorganic Chemistrychemistry.chemical_compoundlawAluminiumYTTRIUM-ALUMINUM-GARNET0103 physical sciencesMaterials ChemistryNANO-SIZED POWDERCalcinationPhysical and Theoretical ChemistryPerovskite (structure)010302 applied physicsPRECURSORSPrecipitation (chemistry)Yttrium021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialschemistryChemical engineeringPRECIPITATIONCeramics and CompositesLASER0210 nano-technologyMonoclinic crystal system
researchProduct

Investigation of lanthanum substitution effects in yttrium aluminium garnet: importance of solid state NMR and EPR methods

2020

Copyright © 2020, Springer Science Business Media, LLC, part of Springer Nature

Materials scienceGeneralLiterature_INTRODUCTORYANDSURVEYchemistry.chemical_elementComputingMilieux_LEGALASPECTSOFCOMPUTING02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesGeneralLiterature_MISCELLANEOUSlaw.inventionBiomaterialschemistry.chemical_compoundLanthanumlawImpurityYttrium aluminium garnet:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryLanthanumElectron paramagnetic resonanceHardware_MEMORYSTRUCTURESGeneral ChemistryYttrium021001 nanoscience & nanotechnologyCondensed Matter PhysicsSubstitution effectNMR0104 chemical sciencesElectronic Optical and Magnetic MaterialschemistrySolid-state nuclear magnetic resonanceComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCeramics and CompositesPhysical chemistryEPR0210 nano-technologyLuminescenceJournal of Sol-Gel Science and Technology
researchProduct