Search results for "Gaussian process"

showing 10 items of 128 documents

On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization

2019

Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemComputer scienceetamodelling02 engineering and technologyMulti-objective optimizationTheoretical Computer ScienceData-drivensymbols.namesakeSurrogate modelMetamodellingKriging020204 information systemsMachine learning0202 electrical engineering electronic engineering information engineeringsurrogateGaussian process/dk/atira/pure/subjectarea/asjc/1700Gaussian processpareto-tehokkuusmonitavoiteoptimointikoneoppiminensymbolsBenchmark (computing)/dk/atira/pure/subjectarea/asjc/2600/2614020201 artificial intelligence & image processingnormaalijakaumaComputer Science(all)
researchProduct

Probabilistic Selection Approaches in Decomposition-based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization

2022

In offline data-driven multiobjective optimization, no new data is available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be utilized to find solutions by using these surrogates. The accuracy of the approximated solutions depends on the surrogates and approximations typically involve uncertainties. In this paper, we propose probabilistic selection approaches that utilize the uncertainty information of the Kriging models (as surrogates) to improve the solution process in offline data-driven multiobjective optimization. These approaches are designed for decomposition-base…

Pareto optimalitypareto-tehokkuusgaussiset prosessitGaussian processesevoluutiolaskentamonitavoiteoptimointiTheoretical Computer ScienceKrigingComputational Theory and Mathematicsmetamodellingsurrogatekernel density estimationkriging-menetelmäSoftware
researchProduct

Fractional Tajimi–Kanai model for simulating earthquake ground motion

2014

The ground acceleration is usually modeled as a filtered Gaussian process. The most common model is a Tajimi–Kanai (TK) filter that is a viscoelastic Kelvin–Voigt unit (a spring in parallel with a dashpot) carrying a mass excited by a white noise (acceleration at the bedrock). Based upon the observation that every real material exhibits a power law trend in the creep test, in this paper it is proposed the substitution of the purely viscous element in the Kelvin Voigt element with the so called springpot that is an element having an intermediate behavior between purely elastic (spring) and purely viscous (dashpot) behavior ruled by fractional operator. With this choice two main goals are rea…

PhysicsPeak ground accelerationGround motionBuilding and ConstructionWhite noiseMechanicsGeotechnical Engineering and Engineering GeologyFree fieldViscoelasticityDashpotsymbols.namesakeAccelerationGeophysicsSpring (device)Fractional viscoelasticitysymbolsTajimi–Kanai filterGaussian processCivil and Structural Engineering
researchProduct

MuPix7 - A fast monolithic HV-CMOS pixel chip for Mu3e

2016

The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 \mu m. It provides continuous self-triggered, non-shuttered readout at rates up to 30 Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 \mu m^2. The hit efficiency depends on the chosen working point. Settings with a power consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam campaigns are shown.

PhysicsPhysics - Instrumentation and DetectorsPixel010308 nuclear & particles physicsbusiness.industryGaussianFOS: Physical sciencesTime resolutionInstrumentation and Detectors (physics.ins-det)Semiconductor deviceChip01 natural sciencessymbols.namesakeCMOSTest beam0103 physical sciencessymbolsOptoelectronicsddc:610010306 general physicsbusinessInstrumentationGaussian processMathematical Physics
researchProduct

Rotation-Invariant Texture Retrieval via Signature Alignment Based on Steerable Sub-Gaussian Modeling

2008

This paper addresses the construction of a novel efficient rotation-invariant texture retrieval method that is based on the alignment in angle of signatures obtained via a steerable sub-Gaussian model. In our proposed scheme, we first construct a steerable multivariate sub-Gaussian model, where the fractional lower-order moments of a given image are associated with those of its rotated versions. The feature extraction step consists of estimating the so-called covariations between the orientation subbands of the corresponding steerable pyramid at the same or at adjacent decomposition levels and building an appropriate signature that can be rotated directly without the need of rotating the im…

RotationComputational complexity theoryGaussianFeature extractionNormal DistributionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern Recognition Automatedsymbols.namesakeImage textureArtificial IntelligenceImage Interpretation Computer-AssistedComputer SimulationGaussian processImage retrievalMathematicsModels Statisticalbusiness.industryPattern recognitionImage EnhancementComputer Graphics and Computer-Aided DesignSimilitudeSubtraction TechniquesymbolsRotational invarianceArtificial intelligencebusinessAlgorithmsSoftwareIEEE Transactions on Image Processing
researchProduct

Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles

2022

Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at d…

Satellite ImageryLeaf Area Indexleaf area index; Sentinel-1; time-series; local incidence angle; Whittaker smoother; Gaussian processes regressionWheatWinterGeneral Earth and Planetary SciencesInviernoSentinel-1TrigoImágenes por SatélitesÍndice de Superficie FoliarIrrigationRiegoRemote Sensing; Volume 14; Issue 22; Pages: 5867
researchProduct

Statistical Learning for End-to-End Simulations

2018

End-to-end mission performance simulators (E2ES) are suitable tools to accelerate satellite mission development from concet to deployment. One core element of these E2ES is the generation of synthetic scenes that are observed by the various instruments of an Earth Observation mission. The generation of these scenes rely on Radiative Transfer Models (RTM) for the simulation of light interaction with the Earth surface and atmosphere. However, the execution of advanced RTMs is impractical due to their large computation burden. Classical interpolation and statistical emulation methods of pre-computed Look-Up Tables (LUT) are therefore common practice to generate synthetic scenes in a reasonable…

Signal Processing (eess.SP)Earth observation010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesFOS: Physical sciences02 engineering and technologyLinear interpolation01 natural sciencesSpectral lineComputational sciencesymbols.namesakeSampling (signal processing)Radiative transferFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Signal ProcessingGaussian processInstrumentation and Methods for Astrophysics (astro-ph.IM)021101 geological & geomatics engineering0105 earth and related environmental sciencesEmulationGround-penetrating radarLookup tableRadiancesymbolsAstrophysics - Instrumentation and Methods for AstrophysicsInterpolation
researchProduct

Physics-aware Gaussian processes in remote sensing

2018

Abstract Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and satellite observations. GP regression is based on solid Bayesian statistics, and generally yields efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations between the state vector and the radiance observations is available though and could be useful to improve pre…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciences0211 other engineering and technologies02 engineering and technologyStatistics - Applications01 natural sciencessymbols.namesakeFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Electrical Engineering and Systems Science - Signal ProcessingGaussian processGaussian process emulator021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryEstimation theoryBayesian optimizationState vectorMissing dataBayesian statisticssymbolsGlobal Positioning SystembusinessAlgorithmSoftwareApplied Soft Computing
researchProduct

Nonlinear Distribution Regression for Remote Sensing Applications

2020

In many remote sensing applications, one wants to estimate variables or parameters of interest from observations. When the target variable is available at a resolution that matches the remote sensing observations, standard algorithms, such as neural networks, random forests, or the Gaussian processes, are readily available to relate the two. However, we often encounter situations where the target variable is only available at the group level, i.e., collectively associated with a number of remotely sensed observations. This problem setting is known in statistics and machine learning as multiple instance learning (MIL) or distribution regression (DR). This article introduces a nonlinear (kern…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningArtificial neural networkRemote sensing applicationComputer science0211 other engineering and technologies02 engineering and technologyLeast squaresRandom forestMachine Learning (cs.LG)Kernel (linear algebra)symbols.namesakeKernel (statistics)symbolsFOS: Electrical engineering electronic engineering information engineeringGeneral Earth and Planetary SciencesElectrical Engineering and Systems Science - Signal ProcessingElectrical and Electronic EngineeringGaussian processAlgorithm021101 geological & geomatics engineeringCurse of dimensionalityIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Deep Gaussian processes for biogeophysical parameter retrieval and model inversion

2020

Parameter retrieval and model inversion are key problems in remote sensing and Earth observation. Currently, different approximations exist: a direct, yet costly, inversion of radiative transfer models (RTMs); the statistical inversion with in situ data that often results in problems with extrapolation outside the study area; and the most widely adopted hybrid modeling by which statistical models, mostly nonlinear and non-parametric machine learning algorithms, are applied to invert RTM simulations. We will focus on the latter. Among the different existing algorithms, in the last decade kernel based methods, and Gaussian Processes (GPs) in particular, have provided useful and informative so…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningEarth observation010504 meteorology & atmospheric sciencesIASIComputer science0211 other engineering and technologiesExtrapolation02 engineering and technologyDeep Gaussian Processes01 natural sciencesArticleMachine Learning (cs.LG)symbols.namesakeCopernicus programmeSentinelsMachine learningRadiative transferFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Signal ProcessingComputers in Earth SciencesModel inversionStatistical retrievalEngineering (miscellaneous)Gaussian processChlorophyll contentMoisture021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryInorganic suspended matterTemperatureInversion (meteorology)Statistical modelAtomic and Molecular Physics and OpticsComputer Science ApplicationsInfrared sounderNonlinear systemsymbolsGlobal Positioning SystemColoured dissolved matterbusinessAlgorithm
researchProduct