Search results for "Ge-doping"

showing 3 items of 3 documents

X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions

2011

International audience; We report an experimental study based on confocal microscopy luminescence (CML) and electron paramagnetic resonance (EPR) measurements to investigate the effects of the X-ray (from 50 krad to 200 Mrad) on three specific multistep Ge doped fibers obtained from the same preform by changing some of the drawing conditions (tension and speed). CML data show that, both before and after the irradiation, Germanium Lone Pair Center (GLPC) concentrations are similarly distributed along the diameters of the three fibers and they are partially reduced by irradiation. The irradiation induces also the Non Bridging Oxygen Hole Center (NBOHC) investigated by CML and other paramagnet…

Optical fiberMaterials scienceSilica fiberDrawing effectsAnalytical chemistryRadiation effectschemistry.chemical_elementGermaniumlaw.inventionNuclear magnetic resonancelawMaterials ChemistryOptical fibersPoint defectsIrradiationFiberElectron paramagnetic resonance[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]fiber; silica; X-ray irradiation; Ge-dopingX-ray irradiationCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialsGe-dopingchemistrysilicaCeramics and CompositesLuminescencefiber
researchProduct

Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing

2011

International audience; We have studied the generation mechanisms of two different radiation-induced point defects, the Ge(1) and Ge(2) centers, in a germanosilicate fiber and in its original preform. The samples have been investigated before and after X-ray irradiation using the confocal microscopy luminescence and the electron paramagnetic resonance techniques. Our experimental results show the higher radiation sensitivity of the fiber as compared to the perform and suggest a relation between Ge(1) and Ge(2) generation. To explain our data we have used different models, finding that the destruction probability of the Ge(1) and Ge(2) defects is larger in fiber than in preform, whereas the …

Optical fiberMaterials sciencechemistry.chemical_elementGermanium02 engineering and technology01 natural sciencesFiber silica drawing Ge-doping defects optical absorption microluminescence electron paramagnetic resonancelaw.invention010309 opticsOpticslaw0103 physical sciencesIrradiationFiber[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryDoping021001 nanoscience & nanotechnologyCrystallographic defectAtomic and Molecular Physics and Opticschemistry060.2310) Fiber optics; (160.2220) Defect-center materials; (300.6370) Spectroscopy microwave; (350.5610) Radiation; (300.2140) Emission.0210 nano-technologybusinessLuminescenceRefractive index
researchProduct

Paramagnetic germanium-related centers induced by energetic radiation in silica based devices

2009

silica Ge-doping paramagnetic defects
researchProduct