Search results for "General Relativity"

showing 10 items of 1057 documents

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

2017

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…

AstrofísicaGravitacióneutron star: binaryclose [binaries]Astronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]BATSE OBSERVATIONSgamma-ray burst: generalEQUIVALENCE PRINCIPLEEXTENDED EMISSIONastro-ph.HE; astro-ph.HEAstrophysicsKilonovageneral [gamma-ray burst]01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologyphoton: velocityPROMPT EMISSIONLIGOclose gamma-ray burst: general gravitational waves [binaries]gravitational wave010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)BURST SPECTRAQCQBPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)binaries: closeGRBEQUATION-OF-STATEviolation: Lorentzgamma ray: emissiongravitational wavesAstrophysics - High Energy Astrophysical PhenomenaGWradiation: electromagneticAfterglow Light CurvesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstinvariance: LorentzGW GRB LIGO Virgo Fermi BNSGLASTOptical Afterglows0103 physical sciencesgamma ray: detectorBinaries: close; gamma-ray burst: general; gravitational wavesSTFCFermi010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKAstronomy and AstrophysicsAstronomy and Astrophysictime delaysensitivityShapiro delayLIGORedshiftNeutron starVIRGOPhysics and AstronomyHOST GALAXYCPT VIOLATION13. Climate actiongravitationSpace and Planetary ScienceLUMINOSITY FUNCTIONVIEWING ANGLEbinaries: close; gamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceBNSspectrometerGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]redshift: measuredFermi Gamma-ray Space TelescopeAstrophysical Journal Letters
researchProduct

Self-gravitating disks around rapidly spinning, tilted black holes: General relativistic simulations

2022

We perform general relativistic simulations of self-gravitating black hole-disks in which the spin of the black hole is significantly tilted ($45^\circ$ and $90^\circ$) with respect to the angular momentum of the disk and the disk-to-black hole mass ratio is $16\%-28\%$. The black holes are rapidly spinning with dimensionless spins up to $\sim 0.97$. These are the first self-consistent hydrodynamic simulations of such systems, which can be prime sources for multimessenger astronomy. In particular tilted black hole-disk systems lead to: i) black hole precession; ii) disk precession and warping around the black hole; iii) earlier saturation of the Papaloizou-Pringle instability compared to al…

AstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)AstronomiaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics - High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology
researchProduct

Jet launching from binary neutron star mergers: Incorporating neutrino transport and magnetic fields

2022

We perform general relativistic, magnetohydrodynamic (GRMHD) simulations of merging binary neutron stars incorporating neutrino transport and magnetic fields. Our new radiative transport module for neutrinos adopts a general relativistic, truncated-moment (M1) formalism. The binaries consist of two identical, irrotational stars modeled by the SLy nuclear equation of state (EOS). They are initially in quasicircular orbit and threaded with a poloidal magnetic field that extends from the stellar interior into the exterior, as in typical pulsars. We insert neutrino processes shortly after the merger and focus on the role of neutrinos in launching a jet following the collapse of the hypermassive…

AstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaAstronomiaFOS: Physical sciencesHigh Energy Physics::ExperimentGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics - High Energy Astrophysical PhenomenaGeneral Relativity and Quantum CosmologyPhysical Review D
researchProduct

Magnetohydrodynamic simulations of self-consistent rotating neutron stars with mixed poloidal and toroidal magnetic fields

2021

We perform the first magnetohydrodynamic simulations in full general relativity of self-consistent rotating neutron stars (NSs) with ultrastrong mixed poloidal and toroidal magnetic fields. The initial uniformly rotating NS models are computed assuming perfect conductivity, stationarity, and axisymmetry. Although the specific geometry of the mixed field configuration can delay or accelerate the development of various instabilities known from analytic perturbative studies, all our models finally succumb to them. Differential rotation is developed spontaneously in the cores of our magnetars which, after sufficient time, is converted back to uniform rotation. The rapidly rotating magnetars sho…

AstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaAstronomiaGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics - High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology
researchProduct

GW190814: Spin and equation of state of a neutron star companion

2020

The recent discovery by LIGO/Virgo of a merging binary having a $\sim 23 M_\odot$ black hole and a $\sim 2.6 M_\odot$ compact companion has triggered a debate regarding the nature of the secondary, which falls into the so-called mass gap. Here we explore some consequences of the assumption that the secondary was a neutron star (NS). We show with concrete examples of heretofore viable equations of state (EOSs) that rapid uniform rotation may neither be necessary for some EOSs nor sufficient for others to explain the presence of a NS. Absolute upper limits for the maximum mass of a spherical NS derived from GW170817 already suggest that this unknown compact companion might be a slowly or even…

AstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsEquation of stateNuclear TheoryFOS: Physical sciencesBinary numberAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics01 natural sciencesUniform rotationLIGOGeneral Relativity and Quantum Cosmology3. Good healthNuclear Theory (nucl-th)Black holeNeutron starSpace and Planetary Science0103 physical sciences010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsMass gapSpin-½
researchProduct

Evaporation of Near-Extremal Reissner-Nordström Black Holes

2000

The formation of near-extremal Reissner-Nordstrom black holes in the S-wave approximation can be described, near the event horizon, by an effective solvable model. The corresponding one-loop quantum theory remains solvable and allows to follow analytically the evaporation process which is shown to require an infinite amount of time.

AstrofísicaHigh Energy Physics - TheoryPhysicsEvent horizonMembrane paradigmAstronomyAstronomical PhenomenaEvaporationFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)Models TheoreticalFuzzballGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics - Theory (hep-th)Nonsingular black hole modelsAstronomiaCamps Teoria quàntica deBlack hole thermodynamicsMathematical physicsPhysical Review Letters
researchProduct

Critical energy flux and mass in solvable theories of 2D dilaton gravity

1998

In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass $m_{cr}$ (eventually vanishing). In others there is neither $m_{cr}$ nor a critical flux.

AstrofísicaHigh Energy Physics - TheoryPhysicsGravitacióNuclear and High Energy PhysicsGravity (chemistry)EvaporationFOS: Physical sciencesFluxSemiclassical physicsContext (language use)General Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsCritical massCritical energyDilatonMathematical physicsPhysical Review D
researchProduct

Integrable models and degenerate horizons in two-dimensional gravity

1999

We analyse an integrable model of two-dimensional gravity which can be reduced to a pair of Liouville fields in conformal gauge. Its general solution represents a pair of ``mirror'' black holes with the same temperature. The ground state is a degenerate constant dilaton configuration similar to the Nariai solution of the Schwarzschild-de Sitter case. The existence of $\phi=const.$ solutions and their relation with the solution given by the 2D Birkhoff's theorem is then investigated in a more general context. We also point out some interesting features of the semiclassical theory of our model and the similarity with the behaviour of AdS$_2$ black holes.

AstrofísicaHigh Energy Physics - TheoryPhysicsGravitacióNuclear and High Energy PhysicsIntegrable systemCanonical quantizationDegenerate energy levelsFOS: Physical sciencesSemiclassical physicsConformal mapContext (language use)General Relativity and Quantum CosmologyClassical mechanicsde Sitter–Schwarzschild metricHigh Energy Physics - Theory (hep-th)DilatonMathematical physicsPhysical Review D
researchProduct

New horizons for fundamental physics with LISA

2022

K. G. Arun et al.

AstrofísicaPROTOPLANET MIGRATIONFísica-Modelos matemáticosPhysics and Astronomy (miscellaneous)gr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)GRAVITATIONAL-WAVEShorizonFundamental physicGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational wavesLIGO (Observatory)Tests of general relativitySettore FIS/05 - Astronomia e AstrofisicaDARK-MATTERFísica matemáticaKOZAI MECHANISMHigh Energy PhysicsGENERAL-RELATIVITYFundamental physics; Gravitational waves; LISA; Tests of general relativityFundamental physicsPRIMORDIAL BLACK-HOLESLISAScience & TechnologyGeneral Relativity and Cosmology83CXXPhysicsgravitation: interactiongravitational radiationFísicaCompactQUANTUM-GRAVITYPhysical SciencesAstronomia[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]fundamental physics; gravitational waves; LISA; test of general relativityMODIFIED GRAVITYtest of general relativityGravitational waveMULTIPOLE MOMENTSHUBBLE CONSTANT
researchProduct

Spritz: General relativistic magnetohydrodynamics with neutrinos

2020

We here present a new version of the publicly available general relativistic magnetohydrodynamic (GRMHD) code $\texttt{Spritz}$, which now includes an approximate neutrino leakage scheme able to handle neutrino cooling and heating. The leakage scheme is based on the publicly available $\texttt{ZelmaniLeak}$ code, with a few modifications in order to properly work with $\texttt{Spritz}$. We discuss the involved equations, physical assumptions, and implemented numerical methods, along with a large battery of general relativistic tests performed with and without magnetic fields. Our tests demonstrate the correct implementation of the neutrino leakage scheme, paving the way for further improvem…

AstrofísicaParticle physicsPhysics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberNeutron starGeneral Relativity and Quantum Cosmology (gr-qc)Magnetohydrodynamic01 natural sciencesGeneral Relativity and Quantum CosmologyNumerical relativity0103 physical sciences010306 general physicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsNumerical analysisOrder (ring theory)MagnetohidrodinàmicaMagnetic fieldNeutron starNumerical relativityRelativitat general (Física)MagnetohydrodynamicsNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct