Search results for "General topology"

showing 10 items of 131 documents

Extended Natural Numbers and Counters

2020

Summary This article introduces extended natural numbers, i.e. the set ℕ ∪ {+∞}, in Mizar [4], [3] and formalizes a way to list a cardinal numbers of cardinals. Both concepts have applications in graph theory.

Applied Mathematics03e10 68v20Mathematics::General Topology020207 software engineeringNatural number0102 computer and information sciences02 engineering and technologysequence01 natural sciencesCombinatoricsComputational MathematicsMathematics::Logic010201 computation theory & mathematicscardinal0202 electrical engineering electronic engineering information engineeringextended natural numbersQA1-939MathematicsMathematicsSequence (medicine)MathematicsofComputing_DISCRETEMATHEMATICSFormalized Mathematics
researchProduct

Visible parts and dimensions

2003

We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…

Applied MathematicsMathematical analysisMinkowski–Bouligand dimensionMathematics::General TopologyGeneral Physics and AstronomyDimension functionStatistical and Nonlinear PhysicsUrysohn and completely Hausdorff spacesEffective dimensionCombinatoricsPacking dimensionHausdorff distanceHausdorff dimensionMathematics::Metric GeometryHausdorff measureMathematical PhysicsMathematicsNonlinearity
researchProduct

Fixed point results for Gm-Meir-Keeler contractive and G-(α,ψ)-Meir-Keeler contractive mappings

Applied MathematicsMathematics::General TopologyGeometry and TopologyFixed Point Theory and Applications
researchProduct

Pseudo-path connected homogeneous continua

2015

Abstract The main result of this paper states that every homogeneous pseudo-path connected continuum is weakly chainable, or equivalently, every homogeneous continuum connected by continuous images of the pseudo-arc is itself a continuous image of the pseudo-arc. We notice that even though there exist homogeneous path connected continua that are not continuous images of an arc (Prajs, 2002), they all are continuous images of the pseudo-arc.

Arc (geometry)Connected spaceContinuum (topology)HomogeneousGeneral MathematicsMathematics::General TopologyGeometryImage (mathematics)MathematicsAdvances in Mathematics
researchProduct

Cardinal invariants of cellular Lindelof spaces

2018

A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…

Arhangel’skii TheoremMathematics::General MathematicsDiagonalMathematics::General TopologyRank (differential topology)Space (mathematics)01 natural sciencesCombinatoricsCountable chain conditionCardinalityCardinal inequalityLindelöf spaceFOS: MathematicsContinuum (set theory)0101 mathematicsMathematicsMathematics - General TopologyAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Nonlinear Sciences::Cellular Automata and Lattice Gases· Elementary submodel010101 applied mathematicsMonotonically normal spaceMathematics::LogicComputational MathematicsLindelöf spaceCountable chain conditionGeometry and TopologyAnalysis
researchProduct

Categorically algebraic topology versus universal topology

2013

This paper continues to develop the theory of categorically algebraic (catalg) topology, introduced as a common framework for the majority of the existing many-valued topological settings, to provide convenient means of interaction between different approaches. Motivated by the results of universal topology of H. Herrlich, we show that a concrete category is fibre-small and topological if and only if it is concretely isomorphic to a subcategory of a category of catalg topological structures, which is definable by topological co-axioms.

Artificial IntelligenceLogicMathematics::Category TheoryCategory of topological spacesAlgebraic topology (object)Extension topologyTopological groupGeneral topologyInitial topologyTopological spaceParticular point topologyTopologyMathematicsFuzzy Sets and Systems
researchProduct

IFS attractors and Cantor sets

2006

Abstract We build a metric space which is homeomorphic to a Cantor set but cannot be realized as the attractor of an iterated function system. We give also an example of a Cantor set K in R 3 such that every homeomorphism f of R 3 which preserves K coincides with the identity on K.

Cantor's theoremDiscrete mathematicsMathematics::Dynamical SystemsAntoine's necklaceCantor set[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematicsMathematics::General TopologyCantor function01 natural sciences010101 applied mathematicsCombinatoricsNull setCantor setsymbols.namesakeMetric spaceAttractorsymbolsGeometry and Topology0101 mathematicsAntoine's necklaceCantor's diagonal argumentIterated function systemMathematicsTopology and its Applications
researchProduct

Rigidity of quasisymmetric mappings on self-affine carpets

2016

We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.

Class (set theory)Pure mathematicsMathematics::Dynamical SystemsGeneral Mathematicsquasisymmetric mapsMathematics::General TopologyPhysics::OpticsConformal mapRigidity (psychology)01 natural sciencesDimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsself-affine carpetsMathematicsta111010102 general mathematicsPhysics::Classical PhysicsMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation28A80 37F35 30C62 30L10
researchProduct

A Note on Locally ??-compact Spaces

1995

: The local version of the concept of ℰτ-compactness (where ℰ is a class of Hausdorff spaces and ℰ is a cardinal) introduced by the first author as a generalization of Her-rlich's concept of ℰ-compactness (and hence, also of Mrowka's E-compactness) is defined and the corresponding theory is initiated. An essential part of the theory is developed under the additional assumption that all spaces from ℰ are absolute extensors for spaces under consideration. The theory contains as a special case the classical theory of local compactness.

Class (set theory)Pure mathematicsRiesz–Markov–Kakutani representation theoremGeneral NeuroscienceVague topologyHausdorff spaceMathematics::General TopologyLocally compact groupContinuous functions on a compact Hausdorff spaceGeneral Biochemistry Genetics and Molecular BiologyCompact spaceHistory and Philosophy of ScienceRelatively compact subspaceMathematicsAnnals of the New York Academy of Sciences
researchProduct

Subdirectly irreducible generalized sums of upper semilattice ordered systems of algebras

2002

In [15] the generalized sum of an upper (F 1 , F 2 )-semilattice ordered system of algebras was defined. In this paper we find necessary and sufficient conditions under which this construction yields subdirectly irreducible algebras.

CombinatoricsAlgebra and Number TheorySubdirectly irreducible algebraMathematics::Rings and AlgebrasMathematics::General TopologySemilatticeAlgebra over a fieldMathematicsAlgebra Universalis
researchProduct