Search results for "General topology"
showing 10 items of 131 documents
Extended Natural Numbers and Counters
2020
Summary This article introduces extended natural numbers, i.e. the set ℕ ∪ {+∞}, in Mizar [4], [3] and formalizes a way to list a cardinal numbers of cardinals. Both concepts have applications in graph theory.
Visible parts and dimensions
2003
We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…
Fixed point results for Gm-Meir-Keeler contractive and G-(α,ψ)-Meir-Keeler contractive mappings
Pseudo-path connected homogeneous continua
2015
Abstract The main result of this paper states that every homogeneous pseudo-path connected continuum is weakly chainable, or equivalently, every homogeneous continuum connected by continuous images of the pseudo-arc is itself a continuous image of the pseudo-arc. We notice that even though there exist homogeneous path connected continua that are not continuous images of an arc (Prajs, 2002), they all are continuous images of the pseudo-arc.
Cardinal invariants of cellular Lindelof spaces
2018
A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…
Categorically algebraic topology versus universal topology
2013
This paper continues to develop the theory of categorically algebraic (catalg) topology, introduced as a common framework for the majority of the existing many-valued topological settings, to provide convenient means of interaction between different approaches. Motivated by the results of universal topology of H. Herrlich, we show that a concrete category is fibre-small and topological if and only if it is concretely isomorphic to a subcategory of a category of catalg topological structures, which is definable by topological co-axioms.
IFS attractors and Cantor sets
2006
Abstract We build a metric space which is homeomorphic to a Cantor set but cannot be realized as the attractor of an iterated function system. We give also an example of a Cantor set K in R 3 such that every homeomorphism f of R 3 which preserves K coincides with the identity on K.
Rigidity of quasisymmetric mappings on self-affine carpets
2016
We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.
A Note on Locally ??-compact Spaces
1995
: The local version of the concept of ℰτ-compactness (where ℰ is a class of Hausdorff spaces and ℰ is a cardinal) introduced by the first author as a generalization of Her-rlich's concept of ℰ-compactness (and hence, also of Mrowka's E-compactness) is defined and the corresponding theory is initiated. An essential part of the theory is developed under the additional assumption that all spaces from ℰ are absolute extensors for spaces under consideration. The theory contains as a special case the classical theory of local compactness.
Subdirectly irreducible generalized sums of upper semilattice ordered systems of algebras
2002
In [15] the generalized sum of an upper (F 1 , F 2 )-semilattice ordered system of algebras was defined. In this paper we find necessary and sufficient conditions under which this construction yields subdirectly irreducible algebras.