Search results for "Geodesic"
showing 10 items of 131 documents
Patterson–Sullivan and Bowen–Margulis Measures with Potential on CAT(–1) Spaces
2019
In this chapter, we discuss geometrically and dynamically relevant measures on the boundary at infinity of X and on the space of geodesic lines gX.
The volume of geodesic balls and tubes about totally geodesic submanifolds in compact symmetric spaces
1997
AbstractLet M be a compact Riemannian symmetric space. We give an analytical expression for the area and volume functions of geodesic balls in M and for the area and volume functions of tubes around some totally geodesic submanifolds P of M. We plot the graphs of these functions for some compact irreducible Riemannian symmetric spaces of rank two.
On the index form of a geodesic in a pseudoriemannian almost-product manifold
1986
Caractérisation des flots d' Anosov en dimension 3 par leurs feuilletages faibles
1995
AbstractWe consider Anosov flows on closed 3-manifolds. We show that if such a flow admits a weak foliation whose lifting in the universal covering is a product foliation, thenit is characterized up to topological equivalence by its weak stable foliation up to topological conjugacy. As a corollary we obtain that, up to topological equivalence and finite coverings, suspensions and geodesic flows are the unique Anosov flows on closed 3-manifolds whose weak stable foliations are transversely projective.
A maximal Function Approach to Two-Measure Poincaré Inequalities
2018
This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…
Space of signatures as inverse limits of Carnot groups
2021
We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in ℝn, as introduced by Chen. Hambly-Lyons’s result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in ℝn can be approximated by projections of some geodesics in some Carnot group of rank n, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.
2018
Electrocardiographic imaging (ECGI) strongly relies on a priori assumptions and additional information to overcome ill-posedness. The major challenge of obtaining good reconstructions consists in finding ways to add information that effectively restricts the solution space without violating properties of the sought solution. In this work, we attempt to address this problem by constructing a spatio-temporal basis of body surface potentials (BSP) from simulations of many focal excitations. Measured BSPs are projected onto this basis and reconstructions are expressed as linear combinations of corresponding transmembrane voltage (TMV) basis vectors. The novel method was applied to simulations o…
Broken ray transform on a Riemann surface with a convex obstacle
2014
We consider the broken ray transform on Riemann surfaces in the presence of an obstacle, following earlier work of Mukhometov. If the surface has nonpositive curvature and the obstacle is strictly convex, we show that a function is determined by its integrals over broken geodesic rays that reflect on the boundary of the obstacle. Our proof is based on a Pestov identity with boundary terms, and it involves Jacobi fields on broken rays. We also discuss applications of the broken ray transform.
Basic networks: Definition and applications
2009
7 pages, 4 figures, 1 table.-- PMID: 19490867 [PubMed]
Extremal polynomials in stratified groups
2018
We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.