Search results for "Geodesic"
showing 10 items of 131 documents
Appendix: Diophantine Approximation on Hyperbolic Surfaces
2002
In this (independent) appendix, we study the Diophantine approximation properties for the particular case of the cusped hyperbolic surfaces, in the spirit of Sect. 2 (or [11]), and the many still open questions that arise for them. We refer to [9], [10]for fundamental results and further developments. We study in particular the distance to a cusp of closed geodesics on a hyperbolic surface.
On stability of generic subriemannian caustic in the three-space
2000
Abstract The singularities of exponential mappings in subriemannian geometry are interesting objects, that are already non-trivial at the local level, contrarily to their Riemannian analogs. The simplest case is the three-dimensional contact case. Here we show that the corresponding generic caustics have moduli at the origin, and the first module that occurs has a simple geometric interpretation. On the contrary, we prove a stability result of the “big wave front”, that is, of the graph of the multivalued arclength function, reparametrized in a certain way. This object is a three-dimensional surface, which has also the natural structure of a wave front. The projection on the three-dimension…
Spectral rigidity and invariant distributions on Anosov surfaces
2014
This article considers inverse problems on closed Riemannian surfaces whose geodesic flow is Anosov. We prove spectral rigidity for any Anosov surface and injectivity of the geodesic ray transform on solenoidal 2-tensors. We also establish surjectivity results for the adjoint of the geodesic ray transform on solenoidal tensors. The surjectivity results are of independent interest and imply the existence of many geometric invariant distributions on the unit sphere bundle. In particular, we show that on any Anosov surface $(M,g)$, given a smooth function $f$ on $M$ there is a distribution in the Sobolev space $H^{-1}(SM)$ that is invariant under the geodesic flow and whose projection to $M$ i…
Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere
2013
Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.
THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE
2014
We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…
Darboux curves on surfaces I
2017
International audience; In 1872, G. Darboux defined a family of curves on surfaces of $\mathbb{R}^3$ which are preserved by the action of the Mobius group and share many properties with geodesics. Here, we characterize these curves under the view point of Lorentz geometry and prove that they are geodesics in a 3-dimensional sub-variety of a quadric $\Lambda^4$ contained in the 5-dimensional Lorentz space $\mathbb{R}^5_1$ naturally associated to the surface. We construct a new conformal object: the Darboux plane-field $\mathcal{D}$ and give a condition depending on the conformal principal curvatures of the surface which guarantees its integrability. We show that $\mathcal{D}$ is integrable w…
Hyperbolic isometries versus symmetries of links
2009
We prove that every finite group is the orientation-preserving isometry group of the complement of a hyperbolic link in the 3-sphere.
Averaging and optimal control of elliptic Keplerian orbits with low propulsion
2006
This article deals with the optimal transfer of a satellite between Keplerian orbits using low propulsion. It is based on preliminary results of Geffroy [Generalisation des techniques de moyennation en controle optimal, application aux problemes de rendez-vous orbitaux a poussee faible, Ph.D. Thesis, Institut National Polytechnique de Toulouse, France, Octobre 1997] where the optimal trajectories are approximated using averaging techniques. The objective is to introduce the appropriate geometric framework and to complete the analysis of the averaged optimal trajectories for energy minimization, showing in particular the connection with Riemannian problems having integrable geodesics.
Geodesic flow of the averaged controlled Kepler equation
2008
A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…
Energy minimization of single input orbit transfer by averaging and continuation
2006
AbstractThis article deals with the transfer between Keplerian coplanar orbits using low propulsion. We focus on the energy minimization problem and compute the averaged system, proving integrability and relating the corresponding trajectories to a three-dimensional Riemannian problem that is analyzed in details. The geodesics provide approximations of the extremals of the energy minimization problem and can be used in order to evaluate the optimal trajectories of the time optimal and the minimization of the consumption problems with continuation methods. In particular, minimizing trajectories for transfer towards the geostationary orbit can be approximated in suitable coordinates by straig…