Search results for "Geodesic"

showing 10 items of 131 documents

Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces

2014

We study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we apply the latter to prove suitable generalizations of Brenier's theorem of existence of optimal maps.

Mathematics - Differential GeometryPure mathematicsGeodesicApplied MathematicsInjective metric spacenon-brancingMathematical analysis49Q20 53C23Metric Geometry (math.MG)Measure (mathematics)geodesic metric spaceConvex metric spaceIntrinsic metricMetric spaceMathematics - Metric GeometryDifferential Geometry (math.DG)Metric (mathematics)FOS: Mathematicsupper gradientMetric mapoptimal transportationMathematics
researchProduct

On Radon transforms on compact Lie groups

2016

We show that the Radon transform related to closed geodesics is injective on a Lie group if and only if the connected components are not homeomorphic to $S^1$ nor to $S^3$. This is true for both smooth functions and distributions. The key ingredients of the proof are finding totally geodesic tori and realizing the Radon transform as a family of symmetric operators indexed by nontrivial homomorphisms from $S^1$.

Mathematics - Differential GeometryPure mathematicsGeodesicGeneral MathematicsGroup Theory (math.GR)inversio-ongelmatsymbols.namesake46F12 44A12 22C05 22E30FOS: MathematicsRepresentation Theory (math.RT)MathematicsRadon transformLie groupsinverse problemsApplied Mathematicsta111Lie groupTorusInverse problemInjective functionFourier analysisDifferential Geometry (math.DG)Fourier analysissymbolsRay transformsHomomorphismMathematics - Group TheoryMathematics - Representation Theory
researchProduct

The geodesic X-ray transform with matrix weights

2019

Consider a compact Riemannian manifold of dimension $\geq 3$ with strictly convex boundary, such that the manifold admits a strictly convex function. We show that the attenuated ray transform in the presence of an arbitrary connection and Higgs field is injective modulo the natural obstruction for functions and one-forms. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo gauge transformations. The proofs involve a reduction to a local result showing that the geodesic X-ray transform with a matrix weight can be inverted locally near a point of strict convexity at the boundary, and a detailed analysis of layer stripping arguments ba…

Mathematics - Differential GeometryPure mathematicsGeodesicGeneral Mathematicsmath-phBoundary (topology)FOS: Physical sciences01 natural sciencesinversio-ongelmatintegraaliyhtälötMathematics - Analysis of PDEsmath.MPFOS: MathematicsSectional curvature0101 mathematicsMathematical Physicsmath.APMathematicsX-ray transform010102 general mathematicsMathematical Physics (math-ph)Riemannian manifoldPure MathematicsManifoldConnection (mathematics)math.DGDifferential Geometry (math.DG)monistotConvex functionAnalysis of PDEs (math.AP)
researchProduct

Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm

2011

We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.

Mathematics - Differential GeometryPure mathematicsGeodesicPoincaré inequalityMetric measure spaceCurvature01 natural sciencesConvexitysymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsRicci curvatureMathematicsProbability measure010102 general mathematicsta111Measure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceRicci curvatureDifferential Geometry (math.DG)Poincaré inequalityBounded functionsymbolsMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

The Calderón problem with partial data on manifolds and applications

2013

We consider Calderon's inverse problem with partial data in dimensions $n \geq 3$. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local uniqueness in the Calderon problem with partial data in admissible geometries, and global uniqueness under an additional concavity assumption. This work unifies two earlier approaches to this problem (\cite{KSU} and \cite{I}) and extends both. The proofs are based on impr…

Mathematics - Differential GeometryPure mathematicsGeodesiccalderón problem35J10Boundary (topology)Conformal mappartial data58J32Integral geometryMathematics - Analysis of PDEsFOS: MathematicsUniquenessMathematicsFlatness (mathematics)Numerical AnalysisCalderón problemEuclidean spaceApplied Mathematicsta11135R30Differential Geometry (math.DG)inverse problemSurface of revolutionAnalysisAnalysis of PDEs (math.AP)Analysis & PDE
researchProduct

Regularity properties of spheres in homogeneous groups

2015

We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an alg…

Mathematics - Differential GeometryPure mathematicsGeodesicjoukot (matematiikka)General MathematicsGroup Theory (math.GR)algebra01 natural sciencessets (mathematics)Homothetic transformationMathematics - Metric Geometry0103 physical sciencesEuclidean geometryFOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)spheres0101 mathematicsMathematics28A75 22E25 53C60 53C17 26A16homogeneous groupsmatematiikkamathematicsGroup (mathematics)Applied Mathematicsta111010102 general mathematicsLie groupMetric Geometry (math.MG)Lipschitz continuityAutomorphismDifferential Geometry (math.DG)regularity properties010307 mathematical physicsMathematics - Group TheoryMathematics (all); Applied Mathematics
researchProduct

A reflection approach to the broken ray transform

2013

We reduce the broken ray transform on some Riemannian manifolds (with corners) to the geodesic ray transform on another manifold, which is obtained from the original one by reflection. We give examples of this idea and present injectivity results for the broken ray transform using corresponding earlier results for the geodesic ray transform. Examples of manifolds where the broken ray transform is injective include Euclidean cones and parts of the spheres $S^n$. In addition, we introduce the periodic broken ray transform and use the reflection argument to produce examples of manifolds where it is injective. We also give counterexamples to both periodic and nonperiodic cases. The broken ray t…

Mathematics - Differential GeometryPure mathematicsGeodesicmatematiikkaGeneral MathematicsAstrophysics::High Energy Astrophysical PhenomenaInjective functionManifold53C65 78A05 (Primary) 35R30 58J32 (Secondary)Mathematics - Analysis of PDEsReflection (mathematics)Differential Geometry (math.DG)Euclidean geometryFOS: MathematicsSPHERESMathematics::Differential GeometryCounterexampleMathematicsbroken ray transformAnalysis of PDEs (math.AP)
researchProduct

The X-Ray Transform for Connections in Negative Curvature

2016

We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…

Mathematics - Differential GeometryPure mathematicsHermitian bundlesGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Connection (vector bundle)Boundary (topology)Dynamical Systems (math.DS)X-ray transforms01 natural sciencesinversio-ongelmatHiggs fieldsTensor fieldMathematics - Analysis of PDEsFOS: MathematicsSectional curvatureMathematics - Dynamical Systems0101 mathematicsmath.APMathematical PhysicsPhysicsX-ray transformParallel transport010102 general mathematicsStatistical and Nonlinear Physicsconnections010101 applied mathematicsHiggs fieldmath.DGDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Mathematics::Differential Geometrymath.DSAnalysis of PDEs (math.AP)[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]Communications in Mathematical Physics
researchProduct

Mass transportation on sub-Riemannian structures of rank two in dimension four

2017

International audience; This paper is concerned with the study of the Monge optimal transport problem in sub-Riemannian manifolds where the cost is given by the square of the sub-Riemannian distance. Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admit many singular minimizing geodesics. We treat here the case of sub-Riemannian structures of rank two in dimension four.

Mathematics - Differential Geometry[ MATH ] Mathematics [math]Rank (linear algebra)Geodesicpolar factorization[MATH] Mathematics [math]01 natural sciencesSquare (algebra)CombinatoricsDimension (vector space)0103 physical sciencesFOS: MathematicsUniqueness0101 mathematicsMass transportation[MATH]Mathematics [math]Mathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsApplied Mathematics010102 general mathematicsSub-Riemannian geometryDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]010307 mathematical physicsMathematics::Differential GeometryAnalysisOptimal transport problem
researchProduct

Prescribing the behaviour of geodesics in negative curvature

2010

Given a family of (almost) disjoint strictly convex subsets of a complete negatively curved Riemannian manifold M, such as balls, horoballs, tubular neighborhoods of totally geodesic submanifolds, etc, the aim of this paper is to construct geodesic rays or lines in M which have exactly once an exactly prescribed (big enough) penetration in one of them, and otherwise avoid (or do not enter too much in) them. Several applications are given, including a definite improvement of the unclouding problem of [PP1], the prescription of heights of geodesic lines in a finite volume such M, or of spiraling times around a closed geodesic in a closed such M. We also prove that the Hall ray phenomenon desc…

Mathematics - Differential GeometryhoroballsPure mathematicsGeodesicDisjoint setsLagrange spectrum52A5501 natural sciences53C22Mathematics - Metric Geometry0103 physical sciences0101 mathematicshoroball[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]MathematicsFinite volume methodHall rayAMS : 53 C 22 11 J 06 52 A 55 53 D 25Mathematics - Number Theory010102 general mathematicsnegative curvatureRiemannian manifold[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Closed geodesic53D25[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Totally geodesic010307 mathematical physicsGeometry and TopologyNegative curvatureMathematics::Differential GeometryConvex functiongeodesicgeodesics11J06
researchProduct