Search results for "Geodesic"
showing 10 items of 131 documents
Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces
2014
We study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we apply the latter to prove suitable generalizations of Brenier's theorem of existence of optimal maps.
On Radon transforms on compact Lie groups
2016
We show that the Radon transform related to closed geodesics is injective on a Lie group if and only if the connected components are not homeomorphic to $S^1$ nor to $S^3$. This is true for both smooth functions and distributions. The key ingredients of the proof are finding totally geodesic tori and realizing the Radon transform as a family of symmetric operators indexed by nontrivial homomorphisms from $S^1$.
The geodesic X-ray transform with matrix weights
2019
Consider a compact Riemannian manifold of dimension $\geq 3$ with strictly convex boundary, such that the manifold admits a strictly convex function. We show that the attenuated ray transform in the presence of an arbitrary connection and Higgs field is injective modulo the natural obstruction for functions and one-forms. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo gauge transformations. The proofs involve a reduction to a local result showing that the geodesic X-ray transform with a matrix weight can be inverted locally near a point of strict convexity at the boundary, and a detailed analysis of layer stripping arguments ba…
Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm
2011
We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.
The Calderón problem with partial data on manifolds and applications
2013
We consider Calderon's inverse problem with partial data in dimensions $n \geq 3$. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local uniqueness in the Calderon problem with partial data in admissible geometries, and global uniqueness under an additional concavity assumption. This work unifies two earlier approaches to this problem (\cite{KSU} and \cite{I}) and extends both. The proofs are based on impr…
Regularity properties of spheres in homogeneous groups
2015
We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an alg…
A reflection approach to the broken ray transform
2013
We reduce the broken ray transform on some Riemannian manifolds (with corners) to the geodesic ray transform on another manifold, which is obtained from the original one by reflection. We give examples of this idea and present injectivity results for the broken ray transform using corresponding earlier results for the geodesic ray transform. Examples of manifolds where the broken ray transform is injective include Euclidean cones and parts of the spheres $S^n$. In addition, we introduce the periodic broken ray transform and use the reflection argument to produce examples of manifolds where it is injective. We also give counterexamples to both periodic and nonperiodic cases. The broken ray t…
The X-Ray Transform for Connections in Negative Curvature
2016
We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…
Mass transportation on sub-Riemannian structures of rank two in dimension four
2017
International audience; This paper is concerned with the study of the Monge optimal transport problem in sub-Riemannian manifolds where the cost is given by the square of the sub-Riemannian distance. Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admit many singular minimizing geodesics. We treat here the case of sub-Riemannian structures of rank two in dimension four.
Prescribing the behaviour of geodesics in negative curvature
2010
Given a family of (almost) disjoint strictly convex subsets of a complete negatively curved Riemannian manifold M, such as balls, horoballs, tubular neighborhoods of totally geodesic submanifolds, etc, the aim of this paper is to construct geodesic rays or lines in M which have exactly once an exactly prescribed (big enough) penetration in one of them, and otherwise avoid (or do not enter too much in) them. Several applications are given, including a definite improvement of the unclouding problem of [PP1], the prescription of heights of geodesic lines in a finite volume such M, or of spiraling times around a closed geodesic in a closed such M. We also prove that the Hall ray phenomenon desc…