Search results for "Geologi"

showing 10 items of 1383 documents

Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture

2013

Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it possible to collect spectrometric image blocks with stereoscopic overlaps using light-weight UAV platforms. This new technology is highly relevant, because it opens up new possibilities for measuring and monitoring the environment, which is becoming increasingly important for many environmental challenges. Our objectives were to investigate the processing and use of this new type of image data in precision agriculture. We developed the entire pro…

010504 meteorology & atmospheric sciencesComputer scienceScienceta11710211 other engineering and technologiesPoint cloudStereoscopyradiometry02 engineering and technologyphotogrammetry01 natural scienceslaw.inventionspectrometryradiometriamaatalouslawbiomassa (teollisuus)photogrammetry; radiometry; spectrometry; hyperspectral; UAV; DSM; point cloud; biomass; agriculturefotogrammetriaagriculture021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingta1132. Zero hungerbiomassuavQHyperspectral imagingta4111photogrammetriaReflectivityhyperspektridsmInterferometryspektrometriahyperspectralPhotogrammetry13. Climate actionRemote sensing (archaeology)GeoreferenceGeneral Earth and Planetary SciencesRadiometrypistepilviPrecision agriculturepoint cloudRemote Sensing
researchProduct

Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

2017

Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…

010504 meteorology & atmospheric sciencesComputer scienceUAV0211 other engineering and technologiesPoint cloudta117102 engineering and technologyradiometryphotogrammetry01 natural sciencesforestComputer visionForestRadiometrylcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingfotogrammetriata113UAV; hyperspectral; photogrammetry; radiometry; point cloud; forest; classificationluokitus (toiminta)ta114business.industryHyperspectral imaging15. Life on landOtaNanoClassificationRandom forestPoint cloudTree (data structure)PhotogrammetryhyperspectralHyperspectralclassification13. Climate actionMultilayer perceptronPhotogrammetryGeneral Earth and Planetary SciencesRadiometryRGB color modellcsh:QArtificial intelligencebusinesspoint cloudRemote Sensing; Volume 9; Issue 3; Pages: 185
researchProduct

Automotive Radar in a UAV to Assess Earth Surface Processes and Land Responses

2020

The use of unmanned aerial vehicles (UAVs) in earth science research has drastically increased during the last decade. The reason being innumerable advantages to detecting and monitoring various environmental processes before and after certain events such as rain, wind, flood, etc. or to assess the current status of specific landforms such as gullies, rills, or ravines. The UAV equipped sensors are a key part to success. Besides commonly used sensors such as cameras, radar sensors are another possibility. They are less known for this application, but already well established in research. A vast number of research projects use professional radars, but they are expensive and difficult to hand…

010504 meteorology & atmospheric sciencesComputer scienceUAVReal-time computingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesComputerApplications_COMPUTERSINOTHERSYSTEMS77 GHz02 engineering and technologylcsh:Chemical technology01 natural sciencesBiochemistryArticleAnalytical Chemistrylaw.inventionARS-408lawlcsh:TP1-1185ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSElectrical and Electronic EngineeringRadarInstrumentationARS-404021101 geological & geomatics engineering0105 earth and related environmental sciencesRadarAtomic and Molecular Physics and OpticsEarth surfaceAutomotive radarKey (cryptography)Sensors
researchProduct

Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V

2018

Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognitionCloud computing02 engineering and technologySpectral bands01 natural sciencesConvolutional neural networkData modelingKey (cryptography)Artificial intelligencebusinessTransfer of learning021101 geological & geomatics engineering0105 earth and related environmental sciencesIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

First Results of Hyperspectral Scene Generation in Preparation of the Chime Imaging Spectrometer Mission

2021

End-To-End mission performance simulators (E2Es) are software tools developed to support satellite mission preparatory activities. For passive remote sensing missions, E2Es generate synthetic scenes simulating the interaction of the solar radiation between the atmosphere and the surface; therefore allowing the estimation of the mission performance before its launch. In this paper, we present the CHIME Scene Generator Module (SGM) as part of CHIME E2Es, with state-of-the-art parallelization and optimization that give a performance allowing to obtain a whole year of daily worldwide Top-Of-Atmosphere radiance images in a matter of hours. The CHIME SGM generates 100x200km hyperspectral scenes w…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryReal-time computing0211 other engineering and technologiesImaging spectrometerHyperspectral imaging02 engineering and technology01 natural sciencesConvolutionInstruction setSoftwareShadowRadianceSatellitebusiness021101 geological & geomatics engineering0105 earth and related environmental sciences2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Efficient remote sensing image classification with Gaussian processes and Fourier features

2017

This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.

010504 meteorology & atmospheric sciencesContextual image classificationComputer scienceMultispectral imageData classification0211 other engineering and technologiesSampling (statistics)02 engineering and technology01 natural sciencessymbols.namesakeBayes' theoremFourier transformKernel (statistics)symbolsGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information

2018

Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.

010504 meteorology & atmospheric sciencesContextual image classificationComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesHigh resolutionPattern recognition02 engineering and technologySpace (commercial competition)01 natural sciencesSupport vector machineSatelliteArtificial intelligencebusiness021101 geological & geomatics engineering0105 earth and related environmental sciencesProceedings of the 12th International Conference on Intelligent Systems: Theories and Applications
researchProduct

Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives

2016

International audience; Nitrogen isotope compositions in sedimentary rocks (d(15)N(sed)) are routinely used for reconstructing Cenozoic N-biogeochemical cycling and are also being increasingly applied to understanding the evolution of ancient environments. Here we review the existing knowledge and rationale behind the use of d(15)N(sed) as a proxy for the Precambrian N-biogeochemical cycle with the aims of (i) identifying the major uncertainties that affect analyses and interpretation of nitrogen isotopes in ancient sedimentary rocks, (ii) developing a framework for interpreting the Precambrian d(15)N(sed) record, (iii) testing this framework against a database of Precambrian d(15)N(sed) va…

010504 meteorology & atmospheric sciencesEarth scienceNitrogen isotopesMetamorphismGeologyNitrogen biogeochemical cycle010502 geochemistry & geophysicsEarly Earth01 natural sciencesIsotopes of nitrogenDiagenesisPaleontologyPrecambrianGeologic time scale13. Climate actionGeochemistry and Petrology[SDU]Sciences of the Universe [physics]Ocean oxygenationSedimentary rock14. Life underwaterPrecambrianCenozoicGeology[ SDU ] Sciences of the Universe [physics]0105 earth and related environmental sciences
researchProduct

Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales

2018

Abstract Due to its close link to the photosynthetic process, sun-induced chlorophyll fluorescence (F) opens new possibilities to study dynamics of photosynthetic light reactions and to quantify CO2 assimilation rates. Although recent studies show that F is linearly related to gross primary production (GPP) on coarse spatial and temporal scales, it is argued that this relationship may be mainly driven by seasonal changes in absorbed photochemical active radiation (APAR) and less by the plant light use efficiency (LUE). In this work a high-resolution spectrometer was used to continuously measure red and far-red fluorescence and different reflectance indices within a sugar beet field during t…

010504 meteorology & atmospheric sciencesEconomicsPhotochemical reflectance index0211 other engineering and technologiesEddy covarianceGrowing seasonSoil Science02 engineering and technologyPhotochemical Reflectance IndexPhotosynthesisAtmospheric sciences01 natural sciencesFluorescence yieldSun-induced chlorophyll fluorescencemedicineddc:550Computers in Earth SciencesChlorophyll fluorescenceBiology021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingLight use efficiencyPhysicsDiurnal temperature variationPrimary productionGeologySeasonalitymedicine.diseaseChemistryEngineering sciences. Technology
researchProduct