Search results for "Geometria"

showing 10 items of 422 documents

Area of intrinsic graphs and coarea formula in Carnot Groups

2020

AbstractWe consider submanifolds of sub-Riemannian Carnot groups with intrinsic $$C^1$$ C 1 regularity ($$C^1_H$$ C H 1 ). Our first main result is an area formula for $$C^1_H$$ C H 1 intrinsic graphs; as an application, we deduce density properties for Hausdorff measures on rectifiable sets. Our second main result is a coarea formula for slicing $$C^1_H$$ C H 1 submanifolds into level sets of a $$C^1_H$$ C H 1 function.

Mathematics - Differential GeometrySubmanifoldsGeneral MathematicsCarnot groups Area formula Coarea formula Hausdorff measures SubmanifoldsryhmäteoriaCoarea formulaMetric Geometry (math.MG)Area formulaHausdorff measuressubmanifoldsdifferentiaaligeometriacoarea formulaMathematics - Metric GeometryDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsCarnot groupsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometryarea formulamittateoriaMathematics::Differential Geometry53C17 28A75 22E30
researchProduct

Translating Solitons Over Cartan-Hadamard Manifolds

2020

We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan-Hadamard manifolds. We show that the asymptotic behaviour of entire solitons depends heavily on the curvature of the manifold, and that there exist also bounded solutions if the curvature goes to minus infinity fast enough. Moreover, it is even possible to solve the asymptotic Dirichlet problem under certain conditions.

Mathematics - Differential GeometryTranslating graphsmean curvature equationTranslating solitonsRiemannin monistotdifferentiaaligeometriaDifferential Geometry (math.DG)FOS: Mathematics111 MathematicsHadamard manifoldGeometry and TopologyMathematics::Differential Geometrymonistottranslating graphsCartan-Hadamard manifold53C21 53C44
researchProduct

Metric equivalences of Heintze groups and applications to classifications in low dimension

2021

We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus we take steps towards determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4, and for the subclass of groups of polynomial growth in dimension 5.

Mathematics - Differential GeometrydifferentiaaligeometriaDifferential Geometry (math.DG)Mathematics - Metric GeometryGeneral MathematicsFOS: MathematicsMathematics::Metric GeometryryhmäteoriaMetric Geometry (math.MG)Group Theory (math.GR)20F67 53C23 22E25 17B70 20F69 30L10 54E40Mathematics - Group Theorymetriset avaruudet
researchProduct

The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds

2023

We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce the injectivity problem to the invertibility of generalized Abel transforms and by Taylor expansions of geodesics we show that these Abel transforms are injective. Our result has applications in linearized boundary rigidity problem on Finsler manifolds and especially in linearized elastic travel time tomography.

Mathematics - Differential Geometryinverse problems44A12 53A99 86A22inversio-ongelmatFunctional Analysis (math.FA)Mathematics - Functional Analysisdifferentiaaligeometriageodesic ray transformDifferential Geometry (math.DG)FOS: MathematicsMathematics::Metric GeometryGeometry and TopologyMathematics::Differential GeometryMathematics::Symplectic Geometryintegral geometry
researchProduct

Rigidité, comptage et équidistribution de chaînes de Cartan quaternioniques

2020

We prove an analog of Cartan's theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.; Nous montrons un analogue d'un théorème de Cartan, disant que les transformations préservant les chaînes sur le bord d'un espace hyperbolique quaternionien est une transformation projective. Nous donnons un résultat de comptage et d'équidistribution pour une orbite de chaînes arithmétiques dans le groupe de Heisenberg quaternionique.

Mathematics - Differential GeometrylukuteoriaAlgebra and Number TheoryMathematics - Number TheoryApplied Mathematicsryhmäteoria[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT][MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]quaternionic Heisenberg groupdifferentiaaligeometriaquaternionic hyperbolic geometryequidistributionsub-Riemannian geometry[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]aritmetiikkacountingCartan chainGeometry and TopologyMathematics::Differential GeometryCygan distanceMathematics - Group TheoryAnalysis11N45 (Primary) 11E39 11F06 11N45 20G20 53C17 53C55 (Secondary)
researchProduct

Equivalent definitions of very strict $CD(K,N)$ -spaces

2023

We show the equivalence of the definitions of very strict $CD(K,N)$ -condition defined, on one hand, using (only) the entropy functionals, and on the other, the full displacement convexity class $\mathcal{DC}_N$. In particular, we show that assuming the convexity inequalities for the critical exponent implies it for all the greater exponents. We also establish the existence of optimal transport maps in very strict $CD(K,N)$ -spaces with finite $N$.

Mathematics - Differential Geometrymetric measure spacesdifferentiaaligeometriaRicci curvatureMathematics - Metric Geometryoptimal transportDifferential Geometry (math.DG)Optimal transportFOS: MathematicsMetric Geometry (math.MG)Geometry and Topology53C23Metric measure spaces
researchProduct

Pestov identities and X-ray tomography on manifolds of low regularity

2021

We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.

Mathematics - Differential Geometrynon-smooth geometrygeodesic X-ray tomographyinverse problems44A12 53C22 53C65 58J32Pestov identityinversio-ongelmatdifferentiaaligeometriaRiemannin monistotMathematics - Analysis of PDEsDifferential Geometry (math.DG)tomografiaintegraalilaskentaFOS: MathematicsMathematics::Differential Geometryintegral geometryAnalysis of PDEs (math.AP)
researchProduct

Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces

2019

This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool, of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this setting. These results are new and non-trivial even in the setting of Ricci limits. peerReviewed

Mathematics - Differential Geometryset of finite perimeterreduced boundaryrectifiabilityMetric Geometry (math.MG)RCD spacemetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaMathematics - Metric GeometryDifferential Geometry (math.DG)Gauss–Green formulaFOS: MathematicsMathematics::Metric Geometrytangent cone
researchProduct

Extending an example by Colding and Minicozzi

2018

Extending an example by Colding and Minicozzi, we construct a sequence of properly embedded minimal disks $\Sigma_i$ in an infinite Euclidean cylinder around the $x_3$-axis with curvature blow-up at a single point. The sequence converges to a non smooth and non proper minimal lamination in the cylinder. Moreover, we show that the disks $\Sigma_i$ are not properly embedded in a sequence of open subsets of $\mathbb{ R}^3$ that exhausts $\mathbb{ R}^3$.

Mathematics - Differential GeometryvariaatiolaskentaLamination (topology)Curvatureminimal surfaces01 natural sciencesCombinatoricsdifferentiaaligeometria510 Mathematics0103 physical sciencesEuclidean geometryFOS: MathematicsCylinderPhysics::Atomic Physics0101 mathematicsMathematicsSequence010102 general mathematicsSigmaminimal laminationsColding-Minicozzi theoryDifferential geometryDifferential Geometry (math.DG)53A10 (Primary)010307 mathematical physicsGeometry and TopologyMathematics::Differential GeometrySingle point
researchProduct

On globally generated vector bundles on projective spaces

2009

AbstractA classification is given for globally generated vector bundles E of rank k on Pn having first Chern class c1(E)=2. In particular, we get that they split if k<n unless E is a twisted null-correlation bundle on P3. In view of the well-known correspondence between globally generated vector bundles and maps to Grassmannians, we obtain, as a corollary, a classification of double Veronese embeddings of Pn into a Grassmannian G(k−1,N) of (k−1)-planes in PN.

Mathematics::Algebraic GeometryAlgebra and Number TheoryGrassmannians rank-2 bundlesSettore MAT/03 - Geometria
researchProduct